PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m923.
Published online 2009 July 15. doi:  10.1107/S1600536809026658
PMCID: PMC2977259

Bis{2-[(E)-benzyl­imino­meth­yl]-4-methyl­phenolato-κ2 N,O}nickel(II)

Abstract

In the title complex, [Ni(C15H14NO)2], the NiII atom is located on an inversion centre and is coordinated by two O and two N atoms from two symmetry-related bidentate Schiff base ligands in a slightly distorted square-planar geometry. The phenyl and benzene rings in the ligand mol­ecule form a dihedral angle of 72.79 (8)°.

Related literature

For the synthesis of 2-[(E)-(benzyl­imino)meth­yl]-4-methyl­phenol, see: Cohen et al. (1964 [triangle]). For the structure of a related Zn complex, see: Rodriguez de Barbarin et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m923-scheme1.jpg

Experimental

Crystal data

  • [Ni(C15H14NO)2]
  • M r = 507.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m923-efi1.jpg
  • a = 13.7182 (15) Å
  • b = 10.5842 (11) Å
  • c = 8.6716 (9) Å
  • β = 107.593 (1)°
  • V = 1200.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.84 mm−1
  • T = 296 K
  • 0.37 × 0.29 × 0.24 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.751, T max = 0.819
  • 10296 measured reflections
  • 2765 independent reflections
  • 2303 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.081
  • S = 1.04
  • 2765 reflections
  • 161 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026658/is2434sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026658/is2434Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Talent Fund of Ningbo University (grant No. 2006668) and sponsored by the K.C. Wong Magna Fund in Ningbo University.

supplementary crystallographic information

Comment

Schiff bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals (Rodriguez de Barbarin et al., 1994). Salicylaldehyde and its derivatives are useful carbonyl precursors for the synthesis of a large variety of Schiff bases. Here we report on a new Ni(II) complex, (I).

The molecular structure of (I) as illustrated in Fig. 1 has the Ni2+ center in a square geometry as it its coordinated by two O atoms and two N atoms from two 2-[(E)-(benzylimino)methyl]-4-methylphenol bidentate chelating ligands. The bond lengths and bond angles in (I) are within normal ranges. The Ni1—O1 distance of 1.8294 (12) Å is shorter than the distance of Ni1—N1 [1.9242 (14) Å] (Table 1). The dihedral angle between the plane of O1/N1/Ni1 and the adjacent phenol ring is 10.91 (9)°.

Experimental

1 mmol of NiCl2.6H2O (0.240 g) were added to a 15 ml ethanol solution containing 2 mmol (0.450 g) 2-[(E)-(benzylimino)methyl]-4-methylphenol. The resulting mixture was stirred for about 0.5 h. The slow vaporization of the solvent yielded after about 6 d dark green single crystals. Yield: 70.2%. Calcd. for C30H28NiN2O2: C 71.03, H 5.56, N 5.52; Found: C 71.34, H 5.60, N 5.46%.

Synthesis of the ligand 2-[(E)-(benzylimino)methyl]-4-methylphenol: Phenylmethanamine and 5-methylsalicylaldehyde (1:1) were dissolved in ethanol and the solution was refluxed for 3 h. After evaporation, a crude product was recrystallized twice from ethanol to give a pure yellow product (Cohen et al., 1964).

Refinement

All H atoms were located in a difference Fourier map. H atoms of the C—H groups were then placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93, 0.96 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of (I), showing displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) -x + 2, -y + 1, -z].

Crystal data

[Ni(C15H14NO)2]F(000) = 532.0
Mr = 507.26Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3741 reflections
a = 13.7182 (15) Åθ = 3.1–27.5°
b = 10.5842 (11) ŵ = 0.84 mm1
c = 8.6716 (9) ÅT = 296 K
β = 107.593 (1)°Block, dark green
V = 1200.2 (2) Å30.37 × 0.28 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEXII diffractometer2765 independent reflections
Radiation source: fine-focus sealed tube2303 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −16→17
Tmin = 0.751, Tmax = 0.819k = −13→12
10296 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0383P)2 + 0.6191P] where P = (Fo2 + 2Fc2)/3
2765 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni11.00000.50000.00000.01763 (10)
O11.13609 (9)0.46366 (12)0.08566 (15)0.0256 (3)
N11.01028 (10)0.65072 (13)0.12801 (16)0.0188 (3)
C11.31316 (14)0.49471 (18)0.1963 (2)0.0264 (4)
H1A1.32550.41780.15380.032*
C21.39446 (14)0.56674 (19)0.2854 (2)0.0283 (4)
H2A1.46060.53700.30170.034*
C31.38044 (13)0.68377 (19)0.3525 (2)0.0282 (4)
C41.28159 (13)0.72439 (18)0.3268 (2)0.0257 (4)
H4A1.27040.80090.37140.031*
C51.19653 (12)0.65377 (16)0.23490 (19)0.0205 (3)
C61.21133 (13)0.53616 (17)0.16842 (19)0.0215 (3)
C71.47135 (16)0.7606 (2)0.4500 (3)0.0432 (5)
H7A1.44880.82360.51120.065*
H7B1.50290.80090.37810.065*
H7C1.51990.70580.52250.065*
C81.09560 (13)0.70026 (16)0.21563 (19)0.0207 (3)
H8A1.09060.77360.27180.025*
C90.91662 (12)0.71815 (15)0.13304 (19)0.0200 (3)
H9A0.87490.73590.02320.024*
H9B0.93610.79840.18780.024*
C100.85332 (12)0.64504 (15)0.21800 (18)0.0184 (3)
C110.89270 (13)0.54673 (16)0.3250 (2)0.0211 (3)
H11A0.96000.52090.34270.025*
C120.83210 (14)0.48676 (17)0.4056 (2)0.0257 (4)
H12A0.85920.42090.47660.031*
C130.73212 (15)0.52398 (18)0.3814 (2)0.0288 (4)
H13A0.69190.48380.43590.035*
C140.69245 (14)0.6218 (2)0.2752 (2)0.0314 (4)
H14A0.62520.64770.25840.038*
C150.75229 (13)0.68172 (18)0.1936 (2)0.0258 (4)
H15A0.72460.74700.12190.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.01551 (16)0.01832 (17)0.01976 (15)−0.00024 (12)0.00637 (11)−0.00090 (11)
O10.0169 (6)0.0255 (7)0.0320 (7)0.0001 (5)0.0037 (5)−0.0069 (5)
N10.0184 (7)0.0189 (7)0.0210 (6)0.0005 (5)0.0087 (5)0.0025 (5)
C10.0206 (9)0.0296 (10)0.0299 (9)0.0024 (7)0.0089 (7)−0.0021 (7)
C20.0169 (8)0.0387 (11)0.0307 (9)−0.0013 (8)0.0092 (7)0.0004 (8)
C30.0205 (9)0.0366 (11)0.0276 (9)−0.0085 (8)0.0073 (7)−0.0024 (8)
C40.0247 (9)0.0262 (10)0.0278 (8)−0.0048 (7)0.0103 (7)−0.0020 (7)
C50.0182 (8)0.0229 (9)0.0211 (7)−0.0031 (6)0.0072 (6)0.0012 (6)
C60.0194 (8)0.0247 (9)0.0208 (8)−0.0026 (6)0.0066 (6)0.0005 (6)
C70.0231 (10)0.0525 (14)0.0527 (12)−0.0122 (10)0.0094 (9)−0.0174 (11)
C80.0239 (9)0.0184 (8)0.0222 (8)−0.0025 (6)0.0103 (7)0.0003 (6)
C90.0195 (8)0.0176 (8)0.0240 (8)0.0026 (6)0.0082 (6)0.0013 (6)
C100.0197 (8)0.0184 (8)0.0181 (7)0.0005 (6)0.0074 (6)−0.0023 (6)
C110.0194 (8)0.0215 (8)0.0231 (8)0.0034 (7)0.0073 (6)0.0012 (6)
C120.0301 (10)0.0238 (9)0.0247 (8)0.0023 (7)0.0105 (7)0.0043 (7)
C130.0286 (10)0.0333 (11)0.0289 (9)−0.0050 (8)0.0153 (8)0.0008 (7)
C140.0191 (9)0.0446 (12)0.0334 (9)0.0053 (8)0.0123 (7)0.0035 (8)
C150.0230 (9)0.0303 (10)0.0248 (8)0.0068 (7)0.0084 (7)0.0055 (7)

Geometric parameters (Å, °)

Ni1—O1i1.8294 (12)C7—H7A0.9600
Ni1—O11.8294 (12)C7—H7B0.9600
Ni1—N1i1.9242 (14)C7—H7C0.9600
Ni1—N11.9242 (14)C8—H8A0.9300
O1—C61.312 (2)C9—C101.511 (2)
N1—C81.298 (2)C9—H9A0.9700
N1—C91.482 (2)C9—H9B0.9700
C1—C21.379 (3)C10—C111.390 (2)
C1—C61.414 (2)C10—C151.392 (2)
C1—H1A0.9300C11—C121.391 (2)
C2—C31.406 (3)C11—H11A0.9300
C2—H2A0.9300C12—C131.381 (3)
C3—C41.375 (3)C12—H12A0.9300
C3—C71.514 (3)C13—C141.383 (3)
C4—C51.412 (2)C13—H13A0.9300
C4—H4A0.9300C14—C151.389 (2)
C5—C61.412 (2)C14—H14A0.9300
C5—C81.431 (2)C15—H15A0.9300
O1i—Ni1—O1180.00 (8)C3—C7—H7C109.5
O1i—Ni1—N1i92.99 (6)H7A—C7—H7C109.5
O1—Ni1—N1i87.01 (6)H7B—C7—H7C109.5
O1i—Ni1—N187.01 (6)N1—C8—C5126.80 (16)
O1—Ni1—N192.99 (6)N1—C8—H8A116.6
N1i—Ni1—N1180.00 (7)C5—C8—H8A116.6
C6—O1—Ni1129.55 (12)N1—C9—C10113.51 (13)
C8—N1—C9115.13 (14)N1—C9—H9A108.9
C8—N1—Ni1124.64 (12)C10—C9—H9A108.9
C9—N1—Ni1120.22 (10)N1—C9—H9B108.9
C2—C1—C6120.95 (17)C10—C9—H9B108.9
C2—C1—H1A119.5H9A—C9—H9B107.7
C6—C1—H1A119.5C11—C10—C15118.58 (15)
C1—C2—C3122.03 (17)C11—C10—C9122.97 (14)
C1—C2—H2A119.0C15—C10—C9118.38 (15)
C3—C2—H2A119.0C10—C11—C12120.43 (16)
C4—C3—C2117.38 (17)C10—C11—H11A119.8
C4—C3—C7121.88 (18)C12—C11—H11A119.8
C2—C3—C7120.74 (17)C13—C12—C11120.70 (16)
C3—C4—C5122.16 (17)C13—C12—H12A119.6
C3—C4—H4A118.9C11—C12—H12A119.6
C5—C4—H4A118.9C12—C13—C14119.18 (17)
C4—C5—C6120.06 (16)C12—C13—H13A120.4
C4—C5—C8119.30 (16)C14—C13—H13A120.4
C6—C5—C8120.59 (15)C13—C14—C15120.46 (16)
O1—C6—C5123.54 (16)C13—C14—H14A119.8
O1—C6—C1119.03 (16)C15—C14—H14A119.8
C5—C6—C1117.42 (16)C14—C15—C10120.65 (16)
C3—C7—H7A109.5C14—C15—H15A119.7
C3—C7—H7B109.5C10—C15—H15A119.7
H7A—C7—H7B109.5

Symmetry codes: (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2434).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.
  • Rodriguez de Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205–207.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography