PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m889.
Published online 2009 July 11. doi:  10.1107/S1600536809025641
PMCID: PMC2977257

Di-μ-chlorido-bis­({2-[(4-bromo­phen­yl)­imino­meth­yl]pyridine-κ2 N,N′}­chloridomercury(II))

Abstract

The unique HgII ion in the title centrosymmetric dinuclear complex, [Hg2Cl4(C12H9BrN2)2], is in a distorted trigonal–bipyramidal coordination environment formed by the bis-chelating N-heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg—Cl bonds is significantly longer than the other.

Related literature

For background information on diimine complexes, see: Dehghanpour & Mahmoudi (2007 [triangle]); Dehghanpour, Mahmoudi, Khalaj & Salmanpour (2007 [triangle]). For related crystal structures, see: Mahmoudi et al. (2009 [triangle]); Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m889-scheme1.jpg

Experimental

Crystal data

  • [Hg2Cl4(C12H9BrN2)2]
  • M r = 1065.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m889-efi1.jpg
  • a = 7.6697 (2) Å
  • b = 15.0247 (4) Å
  • c = 12.2129 (4) Å
  • β = 96.738 (1)°
  • V = 1397.63 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 14.24 mm−1
  • T = 100 K
  • 0.10 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2005 [triangle]) T min = 0.280, T max = 0.491
  • 17922 measured reflections
  • 4047 independent reflections
  • 3636 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.041
  • S = 1.01
  • 4047 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.97 e Å−3
  • Δρmin = −1.15 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025641/lh2844sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025641/lh2844Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AM acknowledges the Islamic Azad University Research Council for partial support of this work.

supplementary crystallographic information

Comment

In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour & Mahmoudi, 2007; Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007), we report herein the crystal structure of the title complex. The title compound was prepared by the reaction of HgCl2 with (4-bromophenyl)pyridin-2-ylmethyleneamine.

The molecluar structure of the title complex (I) is shown in (Fig. 1). The unique HgII ion in is in a distorted trigonal-bipyramidal coordination environment formed by a bis-chelating ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg-Cl bonds is significantly longer than the other.

Experimental

The title complex was prepared by the reaction of HgCl2 and (4-bromophenyl)pyridin-2-ylmethyleneamine (molar ratio 1:1) in acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave yellow crystals of (I) in 69% yield. Calc. for C12H9BrCl2HgN2: C 27.06, H 1.70, N 5.26%; found: C 27.01, H 1.72, N 5.20%.

Refinement

The H atom were placed in calcluated positions with C-H = 0.95Å and refined in a a riding-model approximation with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure od the title complex, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius [symmetry code: (a) -x, -y+1, -z].

Crystal data

[Hg2Cl4(C12H9BrN2)2]F(000) = 976
Mr = 1065.22Dx = 2.531 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8129 reflections
a = 7.6697 (2) Åθ = 2.2–29.7°
b = 15.0247 (4) ŵ = 14.24 mm1
c = 12.2129 (4) ÅT = 100 K
β = 96.738 (1)°Prism, yellow
V = 1397.63 (7) Å30.10 × 0.10 × 0.05 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4047 independent reflections
Radiation source: fine-focus sealed tube3636 reflections with I > 2σ(I)
graphiteRint = 0.032
Detector resolution: 0 pixels mm-1θmax = 30.0°, θmin = 2.2°
[var phi] and ω scansh = −10→10
Absorption correction: multi-scan (APEX2; Bruker, 2005)k = −21→20
Tmin = 0.280, Tmax = 0.491l = −17→17
17922 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.015P)2 + 1.35P] where P = (Fo2 + 2Fc2)/3
4047 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = −1.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Hg10.170956 (13)0.446982 (7)0.108289 (9)0.02080 (3)
Br10.86964 (5)0.10383 (2)−0.01114 (3)0.04340 (9)
Cl10.42148 (9)0.53787 (4)0.15929 (7)0.03126 (16)
Cl20.04621 (9)0.39647 (4)−0.07921 (5)0.02143 (12)
N10.2551 (3)0.29234 (14)0.15931 (18)0.0183 (4)
N2−0.0272 (3)0.38863 (15)0.21855 (18)0.0192 (4)
C1−0.0010 (3)0.30362 (17)0.2535 (2)0.0192 (5)
C2−0.1169 (4)0.26078 (18)0.3146 (2)0.0207 (5)
H2A−0.09740.20060.33660.025*
C3−0.2618 (4)0.30668 (18)0.3433 (2)0.0219 (5)
H3A−0.34200.27880.38610.026*
C4−0.2871 (4)0.39390 (18)0.3083 (2)0.0218 (5)
H4A−0.38420.42720.32750.026*
C5−0.1679 (4)0.43198 (18)0.2445 (2)0.0209 (5)
H5A−0.18780.49110.21840.025*
C60.1522 (4)0.25556 (18)0.2214 (2)0.0212 (5)
H6A0.17520.19650.24710.025*
C70.3966 (3)0.24488 (18)0.1221 (2)0.0194 (5)
C80.4078 (4)0.15213 (19)0.1228 (2)0.0239 (5)
H8A0.31930.11750.15080.029*
C90.5489 (4)0.1107 (2)0.0824 (2)0.0270 (6)
H9A0.55720.04760.08200.032*
C100.6778 (4)0.1622 (2)0.0425 (2)0.0260 (6)
C110.6691 (4)0.25420 (19)0.0398 (2)0.0230 (5)
H11A0.75870.28840.01220.028*
C120.5255 (3)0.29538 (18)0.0786 (2)0.0206 (5)
H12A0.51510.35840.07560.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.02163 (5)0.01490 (5)0.02590 (6)−0.00157 (4)0.00290 (4)0.00198 (4)
Br10.04489 (19)0.03626 (17)0.0548 (2)0.01823 (15)0.03004 (17)0.01083 (16)
Cl10.0233 (3)0.0157 (3)0.0531 (5)−0.0016 (2)−0.0027 (3)−0.0017 (3)
Cl20.0274 (3)0.0159 (3)0.0210 (3)0.0040 (2)0.0029 (2)0.0000 (2)
N10.0210 (10)0.0147 (10)0.0187 (10)0.0018 (8)0.0009 (8)−0.0002 (8)
N20.0221 (10)0.0163 (10)0.0194 (10)−0.0008 (8)0.0028 (8)0.0005 (8)
C10.0227 (12)0.0171 (12)0.0179 (12)0.0002 (9)0.0025 (10)0.0003 (9)
C20.0278 (13)0.0152 (12)0.0189 (12)−0.0014 (10)0.0027 (10)0.0027 (9)
C30.0248 (13)0.0226 (13)0.0188 (12)−0.0017 (10)0.0043 (10)0.0028 (10)
C40.0234 (12)0.0201 (12)0.0221 (13)0.0042 (10)0.0034 (10)0.0019 (10)
C50.0256 (13)0.0170 (12)0.0203 (12)0.0028 (10)0.0030 (10)0.0031 (10)
C60.0271 (13)0.0162 (12)0.0202 (12)0.0018 (10)0.0030 (10)0.0014 (10)
C70.0201 (11)0.0202 (12)0.0175 (12)0.0025 (10)0.0004 (9)0.0005 (10)
C80.0281 (13)0.0203 (13)0.0244 (13)0.0015 (11)0.0071 (11)0.0030 (11)
C90.0365 (15)0.0199 (13)0.0258 (14)0.0089 (11)0.0086 (12)0.0027 (11)
C100.0283 (13)0.0273 (14)0.0236 (13)0.0088 (11)0.0077 (11)0.0036 (11)
C110.0231 (12)0.0252 (13)0.0209 (12)0.0008 (11)0.0038 (10)0.0014 (11)
C120.0225 (12)0.0204 (12)0.0187 (12)0.0003 (10)0.0017 (10)0.0011 (10)

Geometric parameters (Å, °)

Hg1—N22.318 (2)C3—H3A0.9500
Hg1—Cl12.3799 (7)C4—C51.392 (4)
Hg1—N12.472 (2)C4—H4A0.9500
Hg1—Cl22.4941 (7)C5—H5A0.9500
Hg1—Cl2i2.8799 (6)C6—H6A0.9500
Br1—C101.894 (3)C7—C81.396 (4)
Cl2—Hg1i2.8799 (6)C7—C121.399 (4)
N1—C61.282 (3)C8—C91.389 (4)
N1—C71.418 (3)C8—H8A0.9500
N2—C51.330 (3)C9—C101.388 (4)
N2—C11.354 (3)C9—H9A0.9500
C1—C21.384 (4)C10—C111.385 (4)
C1—C61.471 (4)C11—C121.394 (4)
C2—C31.387 (4)C11—H11A0.9500
C2—H2A0.9500C12—H12A0.9500
C3—C41.385 (4)
N2—Hg1—Cl1129.00 (6)C3—C4—H4A120.5
N2—Hg1—N170.58 (7)C5—C4—H4A120.5
Cl1—Hg1—N1107.12 (5)N2—C5—C4122.4 (2)
N2—Hg1—Cl2102.20 (6)N2—C5—H5A118.8
Cl1—Hg1—Cl2128.74 (3)C4—C5—H5A118.8
N1—Hg1—Cl290.35 (5)N1—C6—C1120.8 (2)
N2—Hg1—Cl2i88.36 (6)N1—C6—H6A119.6
Cl1—Hg1—Cl2i90.07 (2)C1—C6—H6A119.6
N1—Hg1—Cl2i158.28 (5)C8—C7—C12119.9 (2)
Cl2—Hg1—Cl2i88.926 (19)C8—C7—N1123.3 (2)
Hg1—Cl2—Hg1i91.074 (19)C12—C7—N1116.8 (2)
C6—N1—C7121.4 (2)C9—C8—C7119.7 (3)
C6—N1—Hg1113.18 (17)C9—C8—H8A120.2
C7—N1—Hg1125.39 (17)C7—C8—H8A120.2
C5—N2—C1118.8 (2)C10—C9—C8119.4 (3)
C5—N2—Hg1123.96 (18)C10—C9—H9A120.3
C1—N2—Hg1117.19 (17)C8—C9—H9A120.3
N2—C1—C2121.8 (2)C11—C10—C9122.1 (3)
N2—C1—C6118.2 (2)C11—C10—Br1119.4 (2)
C2—C1—C6119.9 (2)C9—C10—Br1118.5 (2)
C1—C2—C3119.3 (2)C10—C11—C12118.2 (3)
C1—C2—H2A120.4C10—C11—H11A120.9
C3—C2—H2A120.4C12—C11—H11A120.9
C4—C3—C2118.6 (2)C11—C12—C7120.7 (3)
C4—C3—H3A120.7C11—C12—H12A119.7
C2—C3—H3A120.7C7—C12—H12A119.7
C3—C4—C5119.0 (2)
N2—Hg1—Cl2—Hg1i88.09 (6)C6—C1—C2—C3−179.4 (2)
Cl1—Hg1—Cl2—Hg1i−89.22 (3)C1—C2—C3—C40.9 (4)
N1—Hg1—Cl2—Hg1i158.29 (5)C2—C3—C4—C50.8 (4)
Cl2i—Hg1—Cl2—Hg1i0.0C1—N2—C5—C41.5 (4)
N2—Hg1—N1—C6−0.60 (18)Hg1—N2—C5—C4178.0 (2)
Cl1—Hg1—N1—C6125.53 (18)C3—C4—C5—N2−2.1 (4)
Cl2—Hg1—N1—C6−103.42 (18)C7—N1—C6—C1−175.9 (2)
Cl2i—Hg1—N1—C6−15.4 (3)Hg1—N1—C6—C11.6 (3)
N2—Hg1—N1—C7176.8 (2)N2—C1—C6—N1−2.1 (4)
Cl1—Hg1—N1—C7−57.1 (2)C2—C1—C6—N1175.8 (3)
Cl2—Hg1—N1—C773.94 (19)C6—N1—C7—C818.2 (4)
Cl2i—Hg1—N1—C7161.92 (14)Hg1—N1—C7—C8−159.0 (2)
Cl1—Hg1—N2—C586.3 (2)C6—N1—C7—C12−164.6 (2)
N1—Hg1—N2—C5−177.1 (2)Hg1—N1—C7—C1218.3 (3)
Cl2—Hg1—N2—C5−91.0 (2)C12—C7—C8—C91.3 (4)
Cl2i—Hg1—N2—C5−2.5 (2)N1—C7—C8—C9178.5 (3)
Cl1—Hg1—N2—C1−97.14 (19)C7—C8—C9—C100.5 (4)
N1—Hg1—N2—C1−0.46 (18)C8—C9—C10—C11−1.1 (5)
Cl2—Hg1—N2—C185.56 (18)C8—C9—C10—Br1179.6 (2)
Cl2i—Hg1—N2—C1174.10 (18)C9—C10—C11—C120.0 (4)
C5—N2—C1—C20.4 (4)Br1—C10—C11—C12179.3 (2)
Hg1—N2—C1—C2−176.4 (2)C10—C11—C12—C71.8 (4)
C5—N2—C1—C6178.2 (2)C8—C7—C12—C11−2.5 (4)
Hg1—N2—C1—C61.4 (3)N1—C7—C12—C11−179.8 (2)
N2—C1—C2—C3−1.6 (4)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2844).

References

  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dehghanpour, S. & Mahmoudi, A. (2007). Synth. React. Inorg. Met. Org. Chem.37, 35–40.
  • Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.
  • Dehghanpour, S., Mahmoudi, A., Khalaj, M., Salmanpour, S. & Adib, M. (2007). Acta Cryst. E63, m2841.
  • Mahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography