PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m912.
Published online 2009 July 11. doi:  10.1107/S1600536809026221
PMCID: PMC2977252

[μ-1,1′-(Butane-1,4-di­yl)di-1H-benz­imidazole-κ2 N 3:N 3′]bis­{[N,N′-bis(car­boxy­meth­yl)ethyl­enediamine-N,N′-di­acetato-κ5 O,O′,O′′,N,N′]mercury(II)} methanol disolvate

Abstract

The binuclear title complex, [Hg2(C10H14N2O8)2(C18H18N4)]·2CH3OH, lies on an inversion center with the unique HgII ion coordinated in a disorted octa­hedral environment with one Hg—N bond significantly shorter than the other two. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link complex and solvent mol­ecules into a three-dimensional network.

Related literature

For the synthesis, see: Xiao et al. (2004 [triangle]); Xie et al. (2002 [triangle]). For bond lengths related mercury compounds, see: Guo & Dong (2009 [triangle]); Aghabozorg, et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m912-scheme1.jpg

Experimental

Crystal data

  • [Hg2(C10H14N2O8)2(C18H18N4)]·2CH4O
  • M r = 1336.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m912-efi1.jpg
  • a = 10.274 (2) Å
  • b = 19.990 (3) Å
  • c = 11.4717 (17) Å
  • β = 104.035 (13)°
  • V = 2285.7 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.79 mm−1
  • T = 291 K
  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.21, T max = 0.29
  • 14826 measured reflections
  • 4397 independent reflections
  • 3744 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.121
  • S = 1.04
  • 4397 reflections
  • 310 parameters
  • H-atom parameters constrained
  • Δρmax = 1.08 e Å−3
  • Δρmin = −1.60 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026221/lh2830sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026221/lh2830Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

X-WZ thanks Zhengzhou University of Light Industry for research facilities

supplementary crystallographic information

Comment

Research of transition metal-organic polymers has been rapidly expanding because of their intriguing topologies and potential applications in catalysis, fluorescence, electrical conductivity and magnetism. As a result, the preparation of coordination polymers with fascinating frameworks has attracted considerable attention in recent years. For our group, metal-organic nonlinear optical (NLO) materials are of interest for various applications such as optical data processing and biological imaging (Xiao et al., 2004). Some mercury complexes have already been synthesised (Guo, et al., 2009; Aghabozorg et al., 2008), and herein we present the synthesis and crystal structure of the title complex (I) using EDTA and bbbm (Xie, et al., 2002) as ligands. The molecular structure of the title complex is shown in Fig. 1. The dinuclear complex lies on an inversion center with the unique HgII ion coordinated in a disorted octahedral coordination environment with one Hg—N bond significantly shorter than the other two, most likely, in part, as a results of steric effects from the bulky ligands. The Hg-O bond lengths are in agreement with those found in related Hg(II) complexes (Guo & Dong, 2009; Aghabozorg, et al., 2008). The intramolecular Hg···Hg distance is ca. 12.21Å. In the crystal structure, intermolecular O-H···O hydrogen bonds link complex and solvent molecules into a three-dimensional network (Fig. 2). In addition there are weak π···π stacking interactions between benzimidazole rings related by inversion symmetry with a centroid to centroid distance of 3.556 (4)Å.

Experimental

Methanol solutions of HgCl2.2H2O (76 mg, 0.2 mmol), Na2edta (67 mg, 0.2 mmol) and 1, 1'-(1,4-butylidene)bis-1H-benzimidazole (15 mg, 0.1 mmol) were mixed in a 2:2:1 molar ratio, and the reaction mixture was stirred at about 300 K for 2 h. Colourless crystals ofthe title compound were obtained from the solution after three weeks at room temperature.

Refinement

H atoms were placed in calculated positions with O-H = 0.82Å and C-H = 0.93-0.98Å and included in calculated postions with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure with ellipsoids shown at the 30% level. Symmetry code: (A) 1-x, 2-y, -z. The symmetry related solvent methanol molecule is not shown.
Fig. 2.
Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms included in the hydrogen bonds have been included.

Crystal data

[Hg2(C10H14N2O8)2(C18H18N4)]·2CH4OF(000) = 1308
Mr = 1336.09Dx = 1.941 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2608 reflections
a = 10.274 (2) Åθ = 2.4–25.3°
b = 19.990 (3) ŵ = 6.79 mm1
c = 11.4717 (17) ÅT = 291 K
β = 104.035 (13)°Prism, colorless
V = 2285.7 (7) Å30.24 × 0.20 × 0.18 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer4397 independent reflections
Radiation source: sealed tube3744 reflections with I > 2σ(I)
graphiteRint = 0.062
[var phi] and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.21, Tmax = 0.29k = −23→24
14826 measured reflectionsl = −14→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121w = 1/[σ2(Fo2) + (0.08P)2 + 1.99P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4397 reflectionsΔρmax = 1.08 e Å3
310 parametersΔρmin = −1.60 e Å3
0 restraintsAbsolute structure: Refinement
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1031 (7)0.0816 (3)1.0464 (6)0.0335 (15)
C20.0283 (8)0.1117 (4)1.1206 (6)0.0395 (17)
H2A−0.02160.15061.09970.047*
C30.0363 (8)0.0778 (4)1.2276 (7)0.0421 (17)
H3−0.01520.09241.27910.051*
C40.1222 (7)0.0205 (4)1.2612 (6)0.0357 (15)
H40.12890.00081.33590.043*
C50.1937 (7)−0.0058 (4)1.1866 (6)0.0370 (16)
H50.2490−0.04281.20850.044*
C60.1803 (7)0.0253 (4)1.0767 (7)0.0379 (16)
C70.1798 (7)0.0552 (4)0.8889 (7)0.0419 (17)
H70.19370.05370.81180.050*
C80.3271 (7)−0.0452 (4)0.9728 (7)0.0393 (16)
H8A0.3203−0.05670.88940.047*
H8B0.3010−0.08421.01210.047*
C90.4721 (7)−0.0270 (4)1.0330 (7)0.0414 (18)
H9A0.4770−0.01211.11440.050*
H9B0.5275−0.06671.03760.050*
C100.0718 (8)0.3206 (4)0.9820 (7)0.0406 (17)
C11−0.0801 (8)0.3230 (3)0.9266 (7)0.0349 (16)
H11A−0.12790.30250.98060.042*
H11B−0.10980.36900.91300.042*
C12−0.2518 (7)0.2659 (4)0.7742 (7)0.0370 (15)
H12A−0.27590.25490.68930.044*
H12B−0.30760.30290.78730.044*
C13−0.2778 (7)0.2037 (4)0.8490 (6)0.0321 (15)
C14−0.0796 (8)0.3303 (3)0.7160 (6)0.0348 (15)
H14A0.00020.35640.74970.042*
H14B−0.15390.36110.68940.042*
C15−0.0589 (8)0.2912 (4)0.6100 (7)0.0385 (16)
H15A−0.14280.27000.56990.046*
H15B−0.03410.32180.55340.046*
C160.0334 (8)0.1861 (3)0.5512 (7)0.0356 (15)
H16A0.02320.20680.47310.043*
H16B0.11490.15950.56750.043*
C17−0.0798 (7)0.1425 (3)0.5481 (6)0.0313 (14)
C180.1874 (7)0.2721 (4)0.6685 (7)0.0415 (17)
H18A0.20520.28500.59230.050*
H18B0.18720.31240.71540.050*
C190.2947 (7)0.2284 (4)0.7319 (7)0.0363 (15)
H20A0.28770.03810.55810.055*
H20B0.41190.05030.66620.055*
H20C0.4187−0.00430.56970.055*
C200.3614 (9)0.0155 (4)0.6152 (7)0.0436 (18)
Hg10.02119 (3)0.185765 (13)0.82144 (2)0.03426 (13)
N10.1043 (6)0.1013 (3)0.9279 (6)0.0395 (14)
N20.2331 (6)0.0113 (3)0.9788 (6)0.0385 (14)
N3−0.1082 (6)0.2859 (3)0.8103 (6)0.0375 (13)
N40.0466 (6)0.2392 (3)0.6444 (5)0.0366 (13)
O10.1436 (5)0.2817 (3)0.9589 (5)0.0465 (13)
O20.1103 (5)0.3704 (3)1.0576 (5)0.0414 (12)
H20.19240.37331.07400.050*
O3−0.1763 (5)0.1700 (3)0.9062 (5)0.0412 (13)
O4−0.3977 (6)0.1878 (3)0.8430 (5)0.0443 (13)
O5−0.1373 (5)0.1400 (3)0.6322 (5)0.0380 (11)
O6−0.1182 (6)0.1106 (3)0.4498 (5)0.0502 (15)
O70.2823 (6)0.1763 (3)0.7841 (6)0.0443 (13)
O80.4098 (5)0.2491 (3)0.7194 (5)0.0401 (12)
H80.46040.21710.72250.048*
O90.3170 (5)−0.0289 (3)0.6776 (5)0.0415 (12)
H90.2418−0.04080.64110.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.040 (4)0.027 (3)0.029 (3)−0.005 (3)0.000 (3)−0.007 (3)
C20.041 (4)0.040 (4)0.031 (4)0.001 (3)−0.004 (3)−0.002 (3)
C30.041 (4)0.042 (4)0.046 (4)0.004 (3)0.015 (3)0.010 (3)
C40.029 (3)0.042 (4)0.034 (4)0.000 (3)0.001 (3)0.007 (3)
C50.042 (4)0.032 (4)0.033 (4)0.004 (3)0.000 (3)0.001 (3)
C60.027 (3)0.039 (4)0.044 (4)0.005 (3)0.001 (3)0.008 (3)
C70.038 (4)0.040 (4)0.046 (4)0.010 (3)0.007 (3)0.006 (3)
C80.034 (4)0.044 (4)0.042 (4)−0.005 (3)0.014 (3)−0.002 (3)
C90.032 (4)0.046 (4)0.050 (5)−0.005 (3)0.016 (3)−0.013 (4)
C100.038 (4)0.051 (5)0.035 (4)0.007 (3)0.013 (3)0.007 (3)
C110.039 (4)0.030 (3)0.038 (4)−0.005 (3)0.014 (3)0.009 (3)
C120.040 (4)0.036 (4)0.037 (4)0.011 (3)0.013 (3)0.009 (3)
C130.034 (4)0.038 (4)0.026 (3)0.011 (3)0.011 (3)0.003 (3)
C140.037 (4)0.030 (3)0.031 (4)−0.004 (3)−0.005 (3)0.000 (3)
C150.045 (4)0.043 (4)0.030 (4)0.003 (3)0.015 (3)0.004 (3)
C160.036 (4)0.035 (4)0.038 (4)−0.008 (3)0.013 (3)−0.002 (3)
C170.031 (3)0.020 (3)0.040 (4)0.003 (3)0.004 (3)0.002 (3)
C180.041 (4)0.036 (4)0.047 (4)−0.012 (3)0.011 (3)0.002 (3)
C190.031 (3)0.038 (4)0.045 (4)−0.005 (3)0.018 (3)0.005 (3)
C200.062 (5)0.029 (3)0.037 (4)−0.011 (3)0.008 (4)−0.001 (3)
Hg10.02994 (18)0.03898 (19)0.03433 (18)0.00717 (11)0.00868 (11)0.00914 (11)
N10.033 (3)0.047 (4)0.035 (3)0.010 (3)0.001 (3)0.010 (3)
N20.035 (3)0.045 (3)0.034 (3)−0.004 (3)0.005 (3)0.004 (3)
N30.044 (3)0.037 (3)0.034 (3)0.006 (3)0.014 (3)0.003 (3)
N40.032 (3)0.045 (3)0.032 (3)−0.007 (3)0.007 (2)0.000 (3)
O10.036 (3)0.061 (4)0.039 (3)0.005 (3)0.001 (2)−0.007 (3)
O20.028 (3)0.053 (3)0.049 (3)−0.004 (2)0.020 (2)−0.002 (3)
O30.042 (3)0.044 (3)0.041 (3)0.012 (2)0.017 (2)0.024 (2)
O40.033 (3)0.057 (4)0.042 (3)0.002 (2)0.008 (2)0.015 (2)
O50.031 (2)0.044 (3)0.038 (3)0.002 (2)0.006 (2)0.008 (2)
O60.050 (3)0.056 (3)0.050 (3)−0.030 (3)0.023 (3)−0.018 (3)
O70.039 (3)0.036 (3)0.056 (4)−0.012 (2)0.009 (3)0.011 (2)
O80.029 (2)0.053 (3)0.040 (3)−0.005 (2)0.012 (2)0.014 (2)
O90.044 (3)0.050 (3)0.035 (3)−0.015 (2)0.018 (2)−0.006 (2)

Geometric parameters (Å, °)

C1—C61.372 (10)C13—O31.282 (9)
C1—C21.412 (11)C14—N31.481 (9)
C1—N11.417 (9)C14—C151.503 (11)
C2—C31.388 (10)C14—H14A0.9700
C2—H2A0.9300C14—H14B0.9700
C3—C41.440 (10)C15—N41.486 (10)
C3—H30.9300C15—H15A0.9700
C4—C51.361 (10)C15—H15B0.9700
C4—H40.9300C16—C171.446 (9)
C5—C61.383 (10)C16—N41.489 (9)
C5—H50.9300C16—H16A0.9700
C6—N21.389 (10)C16—H16B0.9700
C7—N11.348 (10)C17—O51.248 (9)
C7—N21.364 (10)C17—O61.271 (9)
C7—H70.9300C18—C191.456 (11)
C8—N21.498 (10)C18—N41.552 (9)
C8—C91.527 (10)C18—H18A0.9700
C8—H8A0.9700C18—H18B0.9700
C8—H8B0.9700C19—O71.224 (9)
C9—C9i1.509 (15)C19—O81.293 (8)
C9—H9A0.9700C20—O91.291 (9)
C9—H9B0.9700C20—H20A0.9822
C10—O11.148 (10)C20—H20B0.9735
C10—O21.316 (10)C20—H20C0.9611
C10—C111.536 (11)Hg1—N12.138 (6)
C11—N31.492 (10)Hg1—N42.364 (6)
C11—H11A0.9700Hg1—N32.390 (6)
C11—H11B0.9700Hg1—O32.473 (5)
C12—N31.488 (10)Hg1—O52.547 (5)
C12—C131.569 (10)Hg1—O12.604 (6)
C12—H12A0.9700O2—H20.8200
C12—H12B0.9700O8—H80.8200
C13—O41.258 (9)O9—H90.8200
C6—C1—C2124.2 (7)C17—C16—N4112.3 (6)
C6—C1—N1109.3 (6)C17—C16—H16A109.1
C2—C1—N1126.3 (6)N4—C16—H16A109.1
C3—C2—C1113.6 (7)C17—C16—H16B109.1
C3—C2—H2A123.2N4—C16—H16B109.1
C1—C2—H2A123.2H16A—C16—H16B107.9
C2—C3—C4121.8 (7)O5—C17—O6124.2 (6)
C2—C3—H3119.1O5—C17—C16122.2 (6)
C4—C3—H3119.1O6—C17—C16113.5 (6)
C5—C4—C3121.9 (7)C19—C18—N4113.2 (6)
C5—C4—H4119.1C19—C18—H18A108.9
C3—C4—H4119.1N4—C18—H18A108.9
C4—C5—C6116.7 (7)C19—C18—H18B108.9
C4—C5—H5121.6N4—C18—H18B108.9
C6—C5—H5121.6H18A—C18—H18B107.7
C1—C6—C5121.6 (7)O7—C19—O8122.2 (7)
C1—C6—N2106.0 (6)O7—C19—C18126.9 (7)
C5—C6—N2132.4 (7)O8—C19—C18110.8 (6)
N1—C7—N2110.3 (7)O9—C20—H20A111.4
N1—C7—H7124.9O9—C20—H20B111.5
N2—C7—H7124.9H20A—C20—H20B106.6
N2—C8—C9111.6 (6)O9—C20—H20C111.3
N2—C8—H8A109.3H20A—C20—H20C107.5
C9—C8—H8A109.3H20B—C20—H20C108.3
N2—C8—H8B109.3N1—Hg1—N4137.4 (2)
C9—C8—H8B109.3N1—Hg1—N3146.4 (2)
H8A—C8—H8B108.0N4—Hg1—N375.6 (2)
C9i—C9—C8113.0 (9)N1—Hg1—O385.8 (2)
C9i—C9—H9A109.0N4—Hg1—O3131.86 (19)
C8—C9—H9A109.0N3—Hg1—O368.26 (19)
C9i—C9—H9B109.0N1—Hg1—O5106.7 (2)
C8—C9—H9B109.0N4—Hg1—O567.09 (18)
H9A—C9—H9B107.8N3—Hg1—O591.30 (19)
O1—C10—O2123.9 (8)O3—Hg1—O582.73 (18)
O1—C10—C11124.8 (8)N1—Hg1—O199.7 (2)
O2—C10—C11111.3 (6)N4—Hg1—O192.9 (2)
N3—C11—C10108.2 (6)N3—Hg1—O166.2 (2)
N3—C11—H11A110.1O3—Hg1—O1100.25 (19)
C10—C11—H11A110.1O5—Hg1—O1153.57 (18)
N3—C11—H11B110.1C7—N1—C1105.6 (6)
C10—C11—H11B110.1C7—N1—Hg1122.1 (5)
H11A—C11—H11B108.4C1—N1—Hg1132.2 (5)
N3—C12—C13110.5 (6)C7—N2—C6108.5 (6)
N3—C12—H12A109.5C7—N2—C8126.6 (6)
C13—C12—H12A109.5C6—N2—C8124.9 (6)
N3—C12—H12B109.5C14—N3—C12108.5 (6)
C13—C12—H12B109.5C14—N3—C11109.0 (5)
H12A—C12—H12B108.1C12—N3—C11110.2 (6)
O4—C13—O3124.0 (7)C14—N3—Hg1109.5 (4)
O4—C13—C12117.8 (6)C12—N3—Hg1106.9 (4)
O3—C13—C12118.1 (6)C11—N3—Hg1112.6 (4)
N3—C14—C15111.8 (6)C15—N4—C16112.1 (6)
N3—C14—H14A109.2C15—N4—C18109.8 (6)
C15—C14—H14A109.2C16—N4—C18110.4 (6)
N3—C14—H14B109.2C15—N4—Hg1108.6 (4)
C15—C14—H14B109.2C16—N4—Hg1106.5 (4)
H14A—C14—H14B107.9C18—N4—Hg1109.3 (4)
N4—C15—C14112.7 (6)C10—O1—Hg1113.3 (6)
N4—C15—H15A109.1C10—O2—H2109.5
C14—C15—H15A109.1C13—O3—Hg1112.0 (4)
N4—C15—H15B109.1C17—O5—Hg1108.7 (4)
C14—C15—H15B109.1C19—O8—H8109.5
H15A—C15—H15B107.8C20—O9—H9109.5
C6—C1—C2—C3−1.8 (11)O5—Hg1—N3—C14−76.7 (5)
N1—C1—C2—C3173.8 (7)O1—Hg1—N3—C1489.0 (5)
C1—C2—C3—C44.6 (11)N1—Hg1—N3—C12−83.0 (6)
C2—C3—C4—C5−4.0 (12)N4—Hg1—N3—C12106.5 (4)
C3—C4—C5—C60.1 (11)O3—Hg1—N3—C12−41.0 (4)
C2—C1—C6—C5−1.9 (11)O5—Hg1—N3—C1240.6 (4)
N1—C1—C6—C5−178.2 (7)O1—Hg1—N3—C12−153.7 (5)
C2—C1—C6—N2178.3 (7)N1—Hg1—N3—C1138.1 (7)
N1—C1—C6—N22.0 (8)N4—Hg1—N3—C11−132.3 (5)
C4—C5—C6—C12.7 (11)O3—Hg1—N3—C1180.1 (5)
C4—C5—C6—N2−177.5 (8)O5—Hg1—N3—C11161.8 (4)
N2—C8—C9—C9i−67.0 (10)O1—Hg1—N3—C11−32.5 (4)
O1—C10—C11—N3−21.5 (10)C14—C15—N4—C16159.3 (6)
O2—C10—C11—N3156.8 (6)C14—C15—N4—C18−77.6 (8)
N3—C12—C13—O4168.5 (6)C14—C15—N4—Hg141.9 (7)
N3—C12—C13—O3−15.8 (9)C17—C16—N4—C15−72.5 (8)
N3—C14—C15—N4−54.6 (8)C17—C16—N4—C18164.8 (6)
N4—C16—C17—O5−16.4 (10)C17—C16—N4—Hg146.2 (7)
N4—C16—C17—O6159.9 (6)C19—C18—N4—C15165.0 (6)
N4—C18—C19—O7−14.0 (12)C19—C18—N4—C16−71.0 (8)
N4—C18—C19—O8161.4 (6)C19—C18—N4—Hg145.9 (7)
N2—C7—N1—C1−4.4 (8)N1—Hg1—N4—C15171.9 (5)
N2—C7—N1—Hg1172.8 (5)N3—Hg1—N4—C15−15.9 (5)
C6—C1—N1—C71.4 (8)O3—Hg1—N4—C1526.0 (6)
C2—C1—N1—C7−174.8 (7)O5—Hg1—N4—C1581.8 (5)
C6—C1—N1—Hg1−175.4 (5)O1—Hg1—N4—C15−80.5 (5)
C2—C1—N1—Hg18.4 (11)N1—Hg1—N4—C1651.0 (6)
N4—Hg1—N1—C7−12.1 (8)N3—Hg1—N4—C16−136.8 (5)
N3—Hg1—N1—C7−178.3 (5)O3—Hg1—N4—C16−94.9 (5)
O3—Hg1—N1—C7143.1 (6)O5—Hg1—N4—C16−39.1 (4)
O5—Hg1—N1—C762.0 (6)O1—Hg1—N4—C16158.6 (4)
O1—Hg1—N1—C7−117.2 (6)N1—Hg1—N4—C18−68.3 (6)
N4—Hg1—N1—C1164.2 (5)N3—Hg1—N4—C18103.8 (5)
N3—Hg1—N1—C1−2.0 (9)O3—Hg1—N4—C18145.8 (4)
O3—Hg1—N1—C1−40.6 (6)O5—Hg1—N4—C18−158.5 (5)
O5—Hg1—N1—C1−121.7 (6)O1—Hg1—N4—C1839.3 (5)
O1—Hg1—N1—C159.1 (7)O2—C10—O1—Hg1174.3 (6)
N1—C7—N2—C65.8 (9)C11—C10—O1—Hg1−7.6 (10)
N1—C7—N2—C8−177.3 (6)N1—Hg1—O1—C10−125.7 (6)
C1—C6—N2—C7−4.7 (8)N4—Hg1—O1—C1095.2 (6)
C5—C6—N2—C7175.6 (8)N3—Hg1—O1—C1022.3 (6)
C1—C6—N2—C8178.3 (6)O3—Hg1—O1—C10−38.2 (6)
C5—C6—N2—C8−1.4 (13)O5—Hg1—O1—C1056.1 (8)
C9—C8—N2—C7100.6 (9)O4—C13—O3—Hg1153.3 (6)
C9—C8—N2—C6−82.9 (9)C12—C13—O3—Hg1−22.1 (8)
C15—C14—N3—C12−79.7 (7)N1—Hg1—O3—C13−166.5 (5)
C15—C14—N3—C11160.2 (6)N4—Hg1—O3—C13−9.0 (6)
C15—C14—N3—Hg136.6 (7)N3—Hg1—O3—C1335.3 (5)
C13—C12—N3—C14163.5 (6)O5—Hg1—O3—C13−59.1 (5)
C13—C12—N3—C11−77.1 (7)O1—Hg1—O3—C1394.4 (5)
C13—C12—N3—Hg145.5 (6)O6—C17—O5—Hg1163.8 (6)
C10—C11—N3—C14−80.9 (7)C16—C17—O5—Hg1−20.2 (8)
C10—C11—N3—C12160.1 (6)N1—Hg1—O5—C17−101.6 (5)
C10—C11—N3—Hg140.9 (6)N4—Hg1—O5—C1733.4 (4)
N1—Hg1—N3—C14159.6 (5)N3—Hg1—O5—C17107.1 (5)
N4—Hg1—N3—C14−10.8 (4)O3—Hg1—O5—C17175.0 (5)
O3—Hg1—N3—C14−158.4 (5)O1—Hg1—O5—C1776.6 (6)

Symmetry codes: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O5ii0.821.742.534 (7)164
O8—H8···O4iii0.821.842.462 (7)131
O9—H9···O6iv0.822.002.744 (7)150

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1, y, z; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2830).

References

  • Aghabozorg, H., Bagheri, S., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m1065–m1066. [PMC free article] [PubMed]
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guo, W.-Y. & Dong, G.-Y. (2009). Acta Cryst. E65, m217. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xiao, B., Han, H. Y., Meng, X. R., Song, Y. L. & Hou, H. W. (2004). Inorg. Chem. Commun.7, 378–381.
  • Xie, X. J., Yang, G. S., Cheng, L. & Wang, F. (2002). HuaxueShiji (Chin. Ed.), 22, 222–223

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography