PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1903.
Published online 2009 July 18. doi:  10.1107/S1600536809027081
PMCID: PMC2977241

N-Benzoyl-N′-(2-chloro-3-pyrid­yl)thio­urea

Abstract

The title compound, C13H10ClN3OS, was prepared by the reaction of 3-amino-2-chloropyridine with benzoyl isothio­cyanate at room temperature. The thio­urea group makes dihedral angles of 47.17 (5) and 51.88 (4)°, respectively, with the benzene and pyridyl rings, while the angle between the benzene and pyridine rings is 8.91 (3)°. Inter­molecular hydrogen-bond inter­actions link neighbouring mol­ecules into an infinite supra­molecular structure.

Related literature

For the biological activities of benzanilide and its N-substituted derivatives, see: Teoh et al. (1999 [triangle]); Campo et al. (2002 [triangle]). For the functions of related chloro­phenyl compounds, see: Saeed et al. (2008 [triangle]); Gowda et al. (2008a [triangle],b [triangle],c [triangle]). For an isomeric compound, see: Chai et al. (2008 [triangle]). For our previous work on thio­urea and its derivatives, see: Dong et al. (2006 [triangle], 2007 [triangle], 2008a [triangle],b [triangle]). For the synthetic procedure, see: Ding et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1903-scheme1.jpg

Experimental

Crystal data

  • C13H10ClN3OS
  • M r = 291.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1903-efi1.jpg
  • a = 3.9443 (4) Å
  • b = 14.9250 (15) Å
  • c = 22.268 (2) Å
  • β = 93.889 (1)°
  • V = 1307.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 298 K
  • 0.41 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.839, T max = 0.924
  • 6459 measured reflections
  • 2315 independent reflections
  • 1661 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.088
  • S = 1.03
  • 2315 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027081/at2841sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027081/at2841Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University and the Natural Science Foundation of the Department of Education, An-Hui Province (grant No. KJ2009B110).

supplementary crystallographic information

Comment

Benzanilide and its N-substituted derivatives have been considered to be a class of privileged structural compounds, which usually have excellent biological activities (Teoh et al., 1999; Campo et al., 2002). However, the literatures are full of the function of the 2-chloro-4-nitrophenyl (Saeed et al., 2008), 3,5-dichlorophenyl (Gowda et al., 2008a) and 3-chlorophenyl (Gowda et al., 2008b; Gowda et al., 2008c) and also structures of benzamide and related compounds. As an extension of our work (Dong et al., 2006; Dong et al., 2007; Dong et al., 2008a; Dong et al., 2008b) on synthesis and structural characterization of thiourea and its derivatives, here report the synthesis and structure of the title compound.

In the molecule of the title compound, N-benzoyl-N'-(2-chloro-3-pyridyl)thiourea (Fig. 1), which is isomeric compound to its observed in the structures of N-(2-chlorobenzoyl)-N'-(3-pyridyl)thiourea (Chai et al., 2008). The thiourea group makes dihedral angles of 47.17 (5)° and 51.88 (4)° with the benzene and pyridyl rings respectively, while the angle between the benzene and pyridine rings is 8.91 (3)°. The carbonyl group forms an intramolecular hydrogen bond with the N2—H2 group, which forms a six-membered ring (C2/N1/C1/N2/H2/O1) structure, the H2···O1 bond length is 1.94 Å. The C═O bond length with 1.218 (3) Å is longer than the average C═O bond length [1.200 Å], which is due to intramolecular hydrogen bonding. This is similar to the situation found in the structure of N-benzoyl-N'-(3-pyridyl)thiourea (Dong et al., 2006). The crystal structure is further stabilized by intermolecular N1—H1···S1 and C12—H12···O1 hydrogen bonds interactions (Table 1, Fig. 2), which link neighbouring molecules into an infinite supramolecular structure.

Experimental

N-Benzoyl-N'-(2-chloro-3-pyridyl)thiourea was synthesized according to an analogous method reported earlier (Ding et al., 2008). Benzoyl chloride (702.8 mg, 5.00 mmol) was reacted with ammonium thiocyanate (380.6 mg, 5.00 mmol) in acetonitrile solution (25 ml) continuring stirring for 3 h at room temperature, to give the corresponding benzoyl isothiocyanate, which was added 3-amino-2-chloropyrldine (642.8 mg, 5.00 mmol). After stirring for 20 h at room temperature, the precipitate was reduced pressure filtered, washed successively with acetonitrile and diethyl ether. The product was dried in vacuo, and obtained 599.2 mg of needle-like crystalline solid. Yield, 41.07%. m.p. 424–426 K. Colorless single crystals suitable for X-ray diffraction studies were obtained after two weeks by slow evaporation from a mixture of ethyl acetate/acetone (1:1) of N-benzoyl-N'-(2-chloro-3-pyridyl)thiourea at room temperture. Analysis calculated for C13H10ClN3OS (%): C 53.52, H 3.45, N 14.40. Found: C 53.61, H 3.51, N 14.3.

Refinement

H atoms were treated as riding atoms with distances C—H = 0.93 Å (CH), N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Fig. 2.
Part of the supramolecular structure of the title compound. Intramolecular and intermolecular hydrogen bonds of the title compound are shown as dashed lines.

Crystal data

C13H10ClN3OSF(000) = 600
Mr = 291.73Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2087 reflections
a = 3.9443 (4) Åθ = 2.3–25.0°
b = 14.9250 (15) ŵ = 0.45 mm1
c = 22.268 (2) ÅT = 298 K
β = 93.889 (1)°Needle-like, colourless
V = 1307.9 (2) Å30.41 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer2315 independent reflections
Radiation source: fine-focus sealed tube1661 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −4→4
Tmin = 0.839, Tmax = 0.924k = −17→14
6459 measured reflectionsl = −26→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0355P)2 + 0.2536P] where P = (Fo2 + 2Fc2)/3
2315 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.45798 (17)0.45341 (4)0.58736 (2)0.0389 (2)
Cl10.4376 (2)0.65386 (5)0.77102 (3)0.0581 (2)
N10.6989 (5)0.61464 (12)0.56704 (8)0.0351 (5)
H10.66620.59860.53000.042*
N20.7371 (5)0.57099 (12)0.66633 (7)0.0380 (5)
H20.81310.62440.67270.046*
N30.5774 (6)0.49783 (16)0.81887 (9)0.0523 (6)
O10.8401 (6)0.73435 (11)0.62683 (7)0.0629 (6)
C10.6406 (6)0.54897 (14)0.60938 (9)0.0313 (5)
C20.8025 (7)0.70230 (15)0.57650 (10)0.0387 (6)
C30.8633 (6)0.75438 (14)0.52169 (10)0.0337 (6)
C41.0013 (6)0.71616 (16)0.47233 (10)0.0374 (6)
H41.05200.65530.47240.045*
C51.0642 (7)0.76769 (17)0.42297 (11)0.0475 (7)
H51.16430.74200.39050.057*
C60.9790 (7)0.85723 (18)0.42174 (12)0.0541 (8)
H61.01760.89170.38810.065*
C70.8371 (7)0.89566 (17)0.47016 (12)0.0534 (8)
H70.77600.95580.46880.064*
C80.7846 (7)0.84549 (16)0.52092 (11)0.0459 (7)
H80.69740.87230.55430.055*
C90.5921 (6)0.54468 (16)0.76902 (10)0.0386 (6)
C100.7247 (6)0.51388 (15)0.71689 (9)0.0331 (6)
C110.8605 (7)0.42887 (16)0.71795 (11)0.0415 (6)
H110.95870.40600.68440.050*
C120.8487 (7)0.37809 (17)0.76953 (11)0.0488 (7)
H120.93600.32020.77130.059*
C130.7047 (8)0.41517 (19)0.81819 (12)0.0547 (8)
H130.69550.38050.85270.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0473 (4)0.0371 (4)0.0322 (3)−0.0108 (3)0.0018 (3)−0.0030 (3)
Cl10.0701 (5)0.0542 (4)0.0505 (4)0.0118 (4)0.0069 (4)−0.0115 (3)
N10.0486 (13)0.0312 (11)0.0250 (10)−0.0073 (10)−0.0004 (9)−0.0021 (8)
N20.0557 (14)0.0300 (11)0.0279 (10)−0.0078 (10)−0.0009 (9)−0.0024 (8)
N30.0615 (17)0.0609 (16)0.0348 (12)−0.0110 (13)0.0049 (11)0.0027 (11)
O10.1150 (19)0.0399 (10)0.0337 (10)−0.0175 (11)0.0031 (10)−0.0068 (8)
C10.0322 (14)0.0317 (12)0.0301 (12)0.0023 (11)0.0040 (10)−0.0022 (10)
C20.0478 (17)0.0328 (14)0.0352 (14)−0.0048 (12)0.0005 (12)−0.0013 (11)
C30.0360 (15)0.0304 (13)0.0339 (13)−0.0053 (11)−0.0040 (11)−0.0005 (10)
C40.0382 (15)0.0346 (13)0.0387 (14)−0.0050 (11)−0.0031 (12)−0.0006 (11)
C50.0510 (18)0.0526 (17)0.0391 (14)−0.0094 (14)0.0046 (13)−0.0014 (12)
C60.065 (2)0.0529 (18)0.0436 (16)−0.0102 (15)−0.0023 (14)0.0158 (13)
C70.062 (2)0.0355 (15)0.0610 (19)−0.0001 (14)−0.0046 (16)0.0089 (13)
C80.0536 (18)0.0362 (15)0.0479 (15)0.0007 (13)0.0037 (13)−0.0032 (12)
C90.0424 (16)0.0402 (14)0.0331 (13)−0.0059 (12)0.0014 (11)−0.0041 (11)
C100.0360 (15)0.0332 (13)0.0294 (12)−0.0059 (11)−0.0029 (10)0.0006 (10)
C110.0479 (17)0.0374 (14)0.0386 (14)−0.0008 (12)−0.0017 (12)−0.0028 (11)
C120.0556 (19)0.0400 (15)0.0492 (16)−0.0053 (14)−0.0078 (14)0.0067 (13)
C130.067 (2)0.0562 (18)0.0398 (16)−0.0159 (16)−0.0051 (14)0.0147 (14)

Geometric parameters (Å, °)

S1—C11.657 (2)C4—H40.9300
Cl1—C91.741 (2)C5—C61.378 (3)
N1—C21.382 (3)C5—H50.9300
N1—C11.390 (3)C6—C71.374 (4)
N1—H10.8600C6—H60.9300
N2—C11.340 (3)C7—C81.383 (3)
N2—C101.416 (3)C7—H70.9300
N2—H20.8600C8—H80.9300
N3—C91.316 (3)C9—C101.384 (3)
N3—C131.332 (3)C10—C111.377 (3)
O1—C21.218 (3)C11—C121.379 (3)
C2—C31.480 (3)C11—H110.9300
C3—C41.382 (3)C12—C131.373 (4)
C3—C81.395 (3)C12—H120.9300
C4—C51.378 (3)C13—H130.9300
C2—N1—C1128.66 (18)C7—C6—H6120.0
C2—N1—H1115.7C5—C6—H6120.0
C1—N1—H1115.7C6—C7—C8120.5 (2)
C1—N2—C10125.59 (19)C6—C7—H7119.8
C1—N2—H2117.2C8—C7—H7119.8
C10—N2—H2117.2C7—C8—C3119.5 (2)
C9—N3—C13116.4 (2)C7—C8—H8120.3
N2—C1—N1114.80 (19)C3—C8—H8120.3
N2—C1—S1125.53 (17)N3—C9—C10124.9 (2)
N1—C1—S1119.66 (15)N3—C9—Cl1116.11 (19)
O1—C2—N1121.9 (2)C10—C9—Cl1119.02 (18)
O1—C2—C3122.4 (2)C11—C10—C9117.4 (2)
N1—C2—C3115.72 (19)C11—C10—N2122.3 (2)
C4—C3—C8119.5 (2)C9—C10—N2120.2 (2)
C4—C3—C2122.2 (2)C10—C11—C12119.0 (2)
C8—C3—C2118.3 (2)C10—C11—H11120.5
C5—C4—C3120.4 (2)C12—C11—H11120.5
C5—C4—H4119.8C13—C12—C11118.3 (2)
C3—C4—H4119.8C13—C12—H12120.8
C6—C5—C4120.0 (2)C11—C12—H12120.8
C6—C5—H5120.0N3—C13—C12123.9 (2)
C4—C5—H5120.0N3—C13—H13118.0
C7—C6—C5120.1 (2)C12—C13—H13118.0
C10—N2—C1—N1−175.8 (2)C4—C3—C8—C71.8 (4)
C10—N2—C1—S15.3 (3)C2—C3—C8—C7−179.7 (2)
C2—N1—C1—N2−8.8 (4)C13—N3—C9—C100.8 (4)
C2—N1—C1—S1170.2 (2)C13—N3—C9—Cl1−178.04 (19)
C1—N1—C2—O1−3.9 (4)N3—C9—C10—C11−2.1 (4)
C1—N1—C2—C3176.3 (2)Cl1—C9—C10—C11176.72 (18)
O1—C2—C3—C4144.0 (3)N3—C9—C10—N2−178.1 (2)
N1—C2—C3—C4−36.2 (3)Cl1—C9—C10—N20.7 (3)
O1—C2—C3—C8−34.6 (4)C1—N2—C10—C1150.7 (3)
N1—C2—C3—C8145.3 (2)C1—N2—C10—C9−133.5 (2)
C8—C3—C4—C50.7 (4)C9—C10—C11—C122.0 (3)
C2—C3—C4—C5−177.8 (2)N2—C10—C11—C12177.9 (2)
C3—C4—C5—C6−2.2 (4)C10—C11—C12—C13−0.8 (4)
C4—C5—C6—C71.2 (4)C9—N3—C13—C120.6 (4)
C5—C6—C7—C81.2 (4)C11—C12—C13—N3−0.6 (4)
C6—C7—C8—C3−2.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.942.633 (2)137
N1—H1···S1i0.862.743.5982 (18)178
C12—H12···O1ii0.932.703.324 (3)125

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2841).

References

  • Campo, R., Criado, J. J. & Garcia, E. (2002). J. Inorg. Biochem.89, 74–82. [PubMed]
  • Chai, L.-Q., Ding, Y.-J., Yang, X.-Q., Yan, H.-B. & Dong, W.-K. (2008). Acta Cryst. E64, o1407. [PMC free article] [PubMed]
  • Ding, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658. [PMC free article] [PubMed]
  • Dong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008a). Acta Cryst. E64, o1097. [PMC free article] [PubMed]
  • Dong, W. K., Yang, X. Q., Chai, L. Q., Tian, Y. Q. & Feng, J. H. (2008b). Phosphorus Sulfur Silicon Relat. Elem.183, 1181–1187.
  • Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460.
  • Dong, W. K., Yang, X. Q., Xu, L., Wang, L., Liu, G. L. & Feng, J. H. (2007). Z. Kristallogr. New Cryst. Struct.222, 279–280.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1243. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1300. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o861. [PMC free article] [PubMed]
  • Saeed, A., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, o705. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Teoh, S. G., Ang, S. H. & Fun, H. K. (1999). J. Organomet. Chem.580, 17–21.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography