PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1777–o1778.
Published online 2009 July 4. doi:  10.1107/S1600536809025124
PMCID: PMC2977239

3-Hydr­oxy-3a,6,8c-trimethyl­perhydro­oxireno[2′,3′:7,8]naphtho[1,2-b]furan-7(2H)-one

Abstract

The title compound, C15H22O4, consists of two trans-fused six-membered rings and a trans-fused five-membered γ-lactone. The ep­oxy and hydroxyl groups are α-oriented. The cyclo­hexane rings adopt half-chair and chair conformations and the lactone ring is in an envelope conformation. The mol­ecular structure is stabilized by one O—H(...)O and three C—H(...)O intra­molecular hydrogen bonds.

Related literature

For background to sesquiterpene lactones, see: Fraga (2008 [triangle]). For their biological activity, see: Pillay et al. (2007 [triangle]); Ohno et al. (2005 [triangle]); Lindenmeyer et al. (2006 [triangle]). For synthetic details, see: Villar et al. (1983 [triangle]); González, et al. (1982 [triangle]). For a related structure, see: Rychlewska et al. (1982 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1777-scheme1.jpg

Experimental

Crystal data

  • C15H22O4
  • M r = 266.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1777-efi1.jpg
  • a = 8.251 (3) Å
  • b = 7.239 (2) Å
  • c = 11.434 (2) Å
  • β = 94.201 (5)°
  • V = 681.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 292 K
  • 0.20 × 0.09 × 0.08 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: none
  • 6696 measured reflections
  • 1601 independent reflections
  • 1495 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.108
  • S = 1.13
  • 1601 reflections
  • 179 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025124/pv2169sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025124/pv2169Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

IB thanks the Spanish Research Council (CSIC) for providing a free-of-charge licence for the CSD system.

supplementary crystallographic information

Comment

Sesquiterpene lactones constitute a large group of natural products (Fraga, 2008). The eudesmanolides are natural products belong to the sesquiterpene lactones composed of fifteen carbon atoms. Many of these compounds, natural or synthetics, are of particular interest because of their biological activity (Pillay, et al., 2007; Ohno, et al., 2005; Lindenmeyer, et al., 2006). We report in this article the synthesis and crystal structure of a novel eudesmanolide, the title compound, (I).

The structure of the title compound (Fig. 1) is stabilized by one O—H···O and three C—H···O intramolecular hydrogen bonds (Table 1). The structure of (I) consists of two trans-fused [C(5)—C(10)] six-membered rings and a trans-fused [at C(6)—C(7)] five-membered γ-lactone. The epoxy and hidroxyl group are α -oriented. The cyclohexane rings adopt half-chair [C1/C2/C3/C4/C5/C10] and chair [C5/C6/C7/C8/C9/C10] and the lactone ring is in an envelope conformation respectively, as shown by the Cremer & Pople (1975) puckering parameters [QT=0.525 (2) Å, θ =46.9 (2)°, [var phi]=321.1 (4)°; QT=0.616 (2) Å, θ =8.81 (2)°, [var phi]=56.3 (1)°; q2=0.382 (2) Å, [var phi]2=244.5 (3)°, respectively].

The crystal structure of the title compound is isomorphous with erivanin (Rychlewska et al., 1982).

Experimental

The title compound (I) was prepared by epoxidation of 1 with monoperoxyphthalic acid magnesium (MMPPA) at room temperature as shown in Fig. 2. In turn the product 1 was obtained by reduction of desoxyvulgarina(1-oxo-6β,7α,11β-H-eudesm-4-en-6,12-olide) (Villar et al., 1983), with sodium borohydride in ethanol (González, et al., 1982). Recrystallization from hexane/athyl acetate (3:1) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement

Due to lack of sufficient anomalous dospersion effects, an absolute structure was not established. Therefore, Friedel pairs (634) were merged. The hydroxyl H4 atom was located in Fourier difference maps and refined isotropically. All other H atoms were positioned geometrically and treated as riding with C—H = 0.98 Å for CH, 0.97 Å (CH2) or 0.96 Å (CH3) with Uiso(H) = 1.2 Ueq (C) (for CH, CH2) or Uiso(H) = 1.5Ueq(C) (for CH3).

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Preparation of the title compound.

Crystal data

C15H22O4F(000) = 288
Mr = 266.33Dx = 1.299 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 1601 reflections
a = 8.251 (3) Åθ = 2.4–27.1°
b = 7.239 (2) ŵ = 0.09 mm1
c = 11.434 (2) ÅT = 292 K
β = 94.201 (5)°Block, colourless
V = 681.1 (3) Å30.20 × 0.09 × 0.08 mm
Z = 2

Data collection

Nonius KappaCCD area-detector diffractometer1495 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
graphiteθmax = 27.1°, θmin = 2.5°
[var phi] scans, and ω scans with κ offsetsh = −8→10
6696 measured reflectionsk = −9→9
1601 independent reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0443P] where P = (Fo2 + 2Fc2)/3
1601 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = −0.15 e Å3

Special details

Experimental. Melting points were determined on a Kofler-type apparatus and are uncorrected. The IR spectra were recorded on a Perkin-Elmer Spectrum BX spectrophotometer with KBr as support. The 1H-NMR spectra were obtained with a Brüker Advance DPX-400 at 400 MHz. The MS spectra were recorded on a VG AUTOSPEC FISON instrument. In the purification of the intermediates and final product column chromatography was carried out using Merck silica gel 0.065–0.2 mm. Melting point 473–475 K. IR cm-1: 3529 (O—H), 1769 (γ-lactone). 1H-NMR, δ (CDCl3): 3.96 (1H, dd, J=9.7 and 8.5 Hz, H6), 3.21 (1H, bs, H1), 3.03 (1H, bs, H3), 1.49 (3H, s, H15), 1.24 (3H, d, J= 6.8 Hz, H13), 1.21 (3H, s, H14). MS (m/z): 266.15 (M+, C15H22O4), 248.14 (M+– H2O).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6128 (2)0.3084 (3)0.41480 (13)0.0546 (5)
O20.51059 (16)0.2973 (2)0.58981 (11)0.0384 (4)
O30.4263 (2)0.0404 (3)0.90667 (14)0.0489 (4)
O40.0735 (3)−0.0003 (3)0.84929 (18)0.0662 (6)
H40.164 (5)−0.035 (7)0.855 (4)0.093 (15)*
C10.0892 (3)0.1905 (4)0.8793 (2)0.0509 (6)
H1−0.01870.23460.89660.061*
C20.2005 (3)0.2157 (5)0.98982 (19)0.0541 (6)
H2A0.1790.33511.0240.065*
H2B0.1760.12141.04620.065*
C30.3763 (3)0.2043 (4)0.96754 (17)0.0445 (5)
H30.45210.24681.03190.053*
C40.4356 (2)0.2197 (3)0.84932 (16)0.0356 (4)
C50.3118 (2)0.2328 (3)0.74257 (15)0.0303 (4)
H50.29250.10610.71490.036*
C60.3554 (2)0.3442 (3)0.63683 (15)0.0316 (4)
H60.35430.47610.65610.038*
C70.2322 (2)0.3066 (3)0.53335 (16)0.0364 (4)
H70.22110.17230.52560.044*
C80.0672 (3)0.3830 (4)0.55853 (19)0.0475 (6)
H8A−0.01190.35530.49390.057*
H8B0.07330.5160.56790.057*
C90.0161 (2)0.2934 (4)0.67131 (19)0.0490 (6)
H9A−0.00680.16390.65610.059*
H9B−0.08370.3510.69260.059*
C100.1444 (2)0.3084 (3)0.77649 (17)0.0385 (5)
C110.3227 (3)0.3750 (3)0.43019 (17)0.0395 (5)
H110.31290.50970.42560.047*
C120.4968 (3)0.3260 (3)0.47164 (16)0.0382 (4)
C130.2728 (4)0.2936 (5)0.31047 (19)0.0603 (7)
H13A0.34480.33760.25440.09*
H13B0.16350.33050.28680.09*
H13C0.27850.16130.31460.09*
C140.1588 (3)0.5107 (4)0.8180 (2)0.0560 (6)
H14A0.06790.54080.86230.084*
H14B0.15950.59080.75120.084*
H14C0.25780.52640.86650.084*
C150.6070 (3)0.2836 (5)0.83987 (19)0.0543 (7)
H15A0.66640.2730.9150.081*
H15B0.60660.41020.81480.081*
H15C0.65780.20860.78380.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0602 (10)0.0587 (10)0.0481 (8)0.0041 (9)0.0264 (7)0.0041 (9)
O20.0331 (6)0.0470 (8)0.0366 (7)0.0030 (7)0.0118 (5)0.0026 (7)
O30.0554 (9)0.0485 (10)0.0431 (8)0.0042 (8)0.0058 (6)0.0103 (7)
O40.0588 (12)0.0673 (13)0.0729 (13)−0.0278 (11)0.0077 (9)0.0140 (11)
C10.0335 (10)0.0708 (18)0.0504 (12)−0.0031 (12)0.0166 (9)0.0062 (12)
C20.0484 (12)0.0761 (18)0.0400 (10)−0.0032 (14)0.0186 (9)0.0033 (12)
C30.0437 (11)0.0569 (15)0.0332 (9)−0.0071 (11)0.0051 (8)0.0002 (10)
C40.0323 (9)0.0401 (11)0.0350 (9)0.0002 (9)0.0069 (7)0.0001 (9)
C50.0261 (8)0.0312 (9)0.0342 (9)−0.0001 (8)0.0076 (6)−0.0023 (8)
C60.0293 (8)0.0328 (10)0.0336 (9)0.0012 (8)0.0080 (7)−0.0007 (7)
C70.0381 (10)0.0341 (10)0.0374 (9)0.0014 (9)0.0042 (7)0.0025 (9)
C80.0364 (10)0.0569 (15)0.0489 (11)0.0073 (10)−0.0006 (8)0.0046 (11)
C90.0271 (8)0.0639 (15)0.0565 (12)0.0041 (10)0.0061 (8)0.0066 (12)
C100.0286 (8)0.0460 (12)0.0422 (9)0.0023 (9)0.0112 (7)0.0010 (10)
C110.0495 (11)0.0351 (10)0.0341 (9)−0.0003 (9)0.0052 (8)0.0014 (8)
C120.0457 (10)0.0329 (10)0.0374 (10)−0.0004 (9)0.0127 (8)0.0014 (8)
C130.0753 (16)0.0665 (17)0.0382 (11)0.0005 (15)−0.0017 (10)−0.0045 (13)
C140.0557 (14)0.0527 (15)0.0622 (15)0.0166 (12)0.0215 (11)−0.0093 (12)
C150.0320 (9)0.089 (2)0.0418 (10)−0.0093 (12)0.0040 (8)0.0017 (13)

Geometric parameters (Å, °)

O1—C121.202 (2)C7—C81.516 (3)
O2—C121.364 (2)C7—C111.524 (3)
O2—C61.464 (2)C7—H70.98
O3—C31.451 (3)C8—C91.530 (3)
O3—C41.459 (3)C8—H8A0.97
O4—C11.427 (4)C8—H8B0.97
O4—H40.78 (4)C9—C101.547 (3)
C1—C21.517 (3)C9—H9A0.97
C1—C101.548 (3)C9—H9B0.97
C1—H10.98C10—C141.541 (4)
C2—C31.493 (3)C11—C131.519 (3)
C2—H2A0.97C11—C121.521 (3)
C2—H2B0.97C11—H110.98
C3—C41.475 (3)C13—H13A0.96
C3—H30.98C13—H13B0.96
C4—C151.500 (3)C13—H13C0.96
C4—C51.536 (3)C14—H14A0.96
C5—C61.518 (2)C14—H14B0.96
C5—C101.561 (2)C14—H14C0.96
C5—H50.98C15—H15A0.96
C6—C71.527 (3)C15—H15B0.96
C6—H60.98C15—H15C0.96
C12—O2—C6108.47 (14)C7—C8—C9108.19 (19)
C3—O3—C460.93 (13)C7—C8—H8A110.1
C1—O4—H4103 (4)C9—C8—H8A110.1
O4—C1—C2110.8 (2)C7—C8—H8B110.1
O4—C1—C10112.2 (2)C9—C8—H8B110.1
C2—C1—C10111.9 (2)H8A—C8—H8B108.4
O4—C1—H1107.2C8—C9—C10114.25 (18)
C2—C1—H1107.2C8—C9—H9A108.7
C10—C1—H1107.2C10—C9—H9A108.7
C3—C2—C1112.77 (17)C8—C9—H9B108.7
C3—C2—H2A109C10—C9—H9B108.7
C1—C2—H2A109H9A—C9—H9B107.6
C3—C2—H2B109C14—C10—C9109.8 (2)
C1—C2—H2B109C14—C10—C1108.05 (19)
H2A—C2—H2B107.8C9—C10—C1109.22 (19)
O3—C3—C459.79 (13)C14—C10—C5111.13 (18)
O3—C3—C2116.2 (2)C9—C10—C5110.48 (16)
C4—C3—C2122.93 (18)C1—C10—C5108.08 (18)
O3—C3—H3115.4C13—C11—C12112.21 (19)
C4—C3—H3115.4C13—C11—C7117.1 (2)
C2—C3—H3115.4C12—C11—C7100.87 (15)
O3—C4—C359.28 (14)C13—C11—H11108.7
O3—C4—C15112.81 (18)C12—C11—H11108.7
C3—C4—C15117.85 (17)C7—C11—H11108.7
O3—C4—C5111.03 (17)O1—C12—O2120.52 (19)
C3—C4—C5119.16 (16)O1—C12—C11128.83 (18)
C15—C4—C5119.95 (17)O2—C12—C11110.63 (15)
C6—C5—C4118.90 (15)C11—C13—H13A109.5
C6—C5—C10106.09 (15)C11—C13—H13B109.5
C4—C5—C10111.90 (15)H13A—C13—H13B109.5
C6—C5—H5106.4C11—C13—H13C109.5
C4—C5—H5106.4H13A—C13—H13C109.5
C10—C5—H5106.4H13B—C13—H13C109.5
O2—C6—C5115.68 (15)C10—C14—H14A109.5
O2—C6—C7102.98 (14)C10—C14—H14B109.5
C5—C6—C7109.82 (16)H14A—C14—H14B109.5
O2—C6—H6109.4C10—C14—H14C109.5
C5—C6—H6109.4H14A—C14—H14C109.5
C7—C6—H6109.4H14B—C14—H14C109.5
C8—C7—C11121.77 (19)C4—C15—H15A109.5
C8—C7—C6110.13 (17)C4—C15—H15B109.5
C11—C7—C6101.85 (16)H15A—C15—H15B109.5
C8—C7—H7107.4C4—C15—H15C109.5
C11—C7—H7107.4H15A—C15—H15C109.5
C6—C7—H7107.4H15B—C15—H15C109.5
O4—C1—C2—C379.3 (3)C11—C7—C8—C9−176.7 (2)
C10—C1—C2—C3−46.7 (3)C6—C7—C8—C9−57.7 (3)
C4—O3—C3—C2114.5 (2)C7—C8—C9—C1052.5 (3)
C1—C2—C3—O3−53.5 (3)C8—C9—C10—C1469.4 (3)
C1—C2—C3—C416.1 (4)C8—C9—C10—C1−172.3 (2)
C3—O3—C4—C15109.9 (2)C8—C9—C10—C5−53.5 (3)
C3—O3—C4—C5−112.26 (18)O4—C1—C10—C14−179.6 (2)
C2—C3—C4—O3−103.4 (3)C2—C1—C10—C14−54.3 (3)
O3—C3—C4—C15−101.3 (2)O4—C1—C10—C961.0 (3)
C2—C3—C4—C15155.3 (3)C2—C1—C10—C9−173.8 (2)
O3—C3—C4—C598.4 (2)O4—C1—C10—C5−59.3 (2)
C2—C3—C4—C5−4.9 (4)C2—C1—C10—C566.0 (3)
O3—C4—C5—C6−146.38 (16)C6—C5—C10—C14−65.2 (2)
C3—C4—C5—C6148.0 (2)C4—C5—C10—C1466.0 (2)
C15—C4—C5—C6−11.9 (3)C6—C5—C10—C957.0 (2)
O3—C4—C5—C1089.3 (2)C4—C5—C10—C9−171.85 (19)
C3—C4—C5—C1023.7 (3)C6—C5—C10—C1176.44 (18)
C15—C4—C5—C10−136.2 (2)C4—C5—C10—C1−52.4 (2)
C12—O2—C6—C5148.07 (17)C8—C7—C11—C13−81.2 (3)
C12—O2—C6—C728.3 (2)C6—C7—C11—C13155.8 (2)
C4—C5—C6—O252.5 (2)C8—C7—C11—C12156.7 (2)
C10—C5—C6—O2179.57 (16)C6—C7—C11—C1233.8 (2)
C4—C5—C6—C7168.51 (17)C6—O2—C12—O1175.0 (2)
C10—C5—C6—C7−64.4 (2)C6—O2—C12—C11−6.3 (2)
O2—C6—C7—C8−169.05 (17)C13—C11—C12—O134.9 (4)
C5—C6—C7—C867.2 (2)C7—C11—C12—O1160.3 (3)
O2—C6—C7—C11−38.5 (2)C13—C11—C12—O2−143.7 (2)
C5—C6—C7—C11−162.29 (16)C7—C11—C12—O2−18.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O30.79 (4)2.27 (4)2.952 (3)146 (5)
C9—H9A···O40.972.552.958 (3)105
C5—H5···O40.982.572.925 (3)101
C15—H15C···O20.962.532.913 (3)104

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2169).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fraga, B. M. (2008). J. Nat. Prod. Rep.25, 1180–1209. [PubMed]
  • González, A. G., Galindo, A., Mansilla, H. & Gutierrez, A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 881–884.
  • Lindenmeyer, M. T., Hrenn, A., Kern, C., Castro, V., Murillo, R., Müller, S., Laufer, S., Schulte-Mönting, J., Siedle, B. & Merfort, I. (2006). Bioorg. Med. Chem.14, 2487–2497. [PubMed]
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Ohno, T., Nagatsu, A., Nakagawa, M., Inoue, M., Li, Y., Minatoguchi, S., Mizukami, H. & Fujiwara, H. (2005). Tetrahedron Lett.46, 8657–8660.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pillay, P., Vlegaar, R., Maharaj, V. J., Smith, P. J. & Lategan, C. A. (2007). J. Ethnopharmacol.112, 71–76. [PubMed]
  • Rychlewska, U., Holub, M., Bloszyk, E. & Drozdz, B. (1982). Collect. Czech. Chem. Commun.47, 88–95.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Villar, A., Zafra-Polo, M. C., Nicoletti, M. & Galeffi, C. (1983). Phytochemistry, 22, 777–778.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography