PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1783.
Published online 2009 July 4. doi:  10.1107/S1600536809025380
PMCID: PMC2977236

2-(2,4-Dichloro­phen­yl)-9-phenyl-2,3-di­hydro­thieno[3,2-b]quinoline

Abstract

In the title compound, C23H15Cl2NS, the quinoline system is almost planar [r.m.s. deviation = 0.013 (2) Å]. The phenyl group is disordered over two positions with site occupancies of 0.55 and 0.45, and is oriented in a nearly perpendicular configuration to the quinoline ring [the dihedral angles between the quinoline ring and the major and minor disordered components of the phenyl ring are 81.8 (2) and 71.6 (2)°, respectively]. The dihydro­thiene ring adopts an envelope conformation. The dihedral angle between the chloro­phenyl ring and the quinoline system is 79.32 (1)°. In the crystal weak C—H(...)π inter­actions occur.

Related literature

For the biological activity of quinoline derivatives, see: Kalluraya & Sreenivasa (1998 [triangle]); Maguire et al. (1994 [triangle]); Doube et al. (1998 [triangle]). For ring puckering analysis, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1783-scheme1.jpg

Experimental

Crystal data

  • C23H15Cl2NS
  • M r = 408.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1783-efi1.jpg
  • a = 11.8860 (5) Å
  • b = 11.5040 (5) Å
  • c = 14.0270 (6) Å
  • β = 94.297 (9)°
  • V = 1912.61 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 293 K
  • 0.19 × 0.16 × 0.11 mm

Data collection

  • Nonius MACH-3 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.917, T max = 0.951
  • 3917 measured reflections
  • 3363 independent reflections
  • 2577 reflections with I > 2σ(I)
  • R int = 0.014
  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.091
  • S = 1.02
  • 3363 reflections
  • 284 parameters
  • 18 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025380/at2782sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025380/at2782Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and DN thank the Management of The Madura College, Madurai, for their constant support.

supplementary crystallographic information

Comment

Quinoline exists as backbone in many natural products and pharmacologically important compounds. Their widerange of biological activities include antimalarial, antiasthmatic, antiinflamatory, antibacterial, antihypertensive and tyrosine kinase PDGF-RTK inhibiting agents (Kalluraya & Sreenivasa, 1998; Doube et al., 1998; Maguire et al., 1994). We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of (I), (Fig. 1), the quinoline ring is planar and is oriented to the disordered phenyl ring in nearly perpendicular configuration. The dihendral angle between the major and minor components of the disordered phenyl rings is 26.6 (4)°. The dihydrothieno ring adopts envelope conformation with C18 being the flap atom. The puckering parameters are q2 = 0.333 (2) Å and [var phi]2 = 319.7 (3)° (Cremer & Pople, 1975). The dihedral angle between the chlorophenyl ring and the quinoline ring is 79.32 (1)°.

In the crystal structure, there is no classical hydrogen bonds. The crystal packing is stabilized by two weak C—H···π interactions (Table 1; Cg2 and Cg3 refer to ring centroids of N1/C2–C6 and C2/C3/C7–C10, respectively).

Experimental

A mixture of 5-(2,4-dichlorophenyl)dihydrothiophen-3(2H)-one, (1 mmol), 2-aminobenzophenone (1 mmol) and trifluroaceticacid (1.5 mmol) was taken in a 10 ml quartz vial and placed in the Biotage microwave oven. The vial was sealed and subjected to microwave irradiation. The irradiation was programmed at (273 K, 25 W, 0 bar, Absorption level: very high) for 30 min. (After a period of 1–2 min, the temperature reached a plateau, 273 K, and remained constant). After N2 gas jet cooling to room temperature (3 min), the reaction mixture was neutralized with NaHCO3 and extracted in CH2Cl2 (2 X 5 ml), dried over MgSO4 and concentrated in vacuo to give the crude product which was further purified either by a short column chromatography (silica gel, EtOAc-petroleumether, 2:8) to afford the corresponding pure quinoline derivative [melting point: 437–438 K, yield: 75%].

Refinement

The disorder in the phenyl ring is identified as 'rotation disorder'. The phenyl ring is disordered over two orientations and it was resolved completely and their major and minor componenets have the site occupancies of 0.55 and 0.45.The bond distances in the ring is constrained using DFIX command. The bond distances and angles of the disordered ring are in agreement with normal phenyl rings. All H atoms of the disordered phenyl group were located in a difference Fourier map. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98Å and Uiso = 1.2Ueq(C) for CH,CH2 groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The two disorder components of the phenyl ring of the molecule are shown, the minor component is labeled with the suffix '. the ...

Crystal data

C23H15Cl2NSF(000) = 840
Mr = 408.32Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.8860 (5) Åθ = 2–25°
b = 11.5040 (5) ŵ = 0.46 mm1
c = 14.0270 (6) ÅT = 293 K
β = 94.297 (9)°Block, colourless
V = 1912.61 (14) Å30.19 × 0.16 × 0.11 mm
Z = 4

Data collection

Nonius MACH-3 diffractometer2577 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
graphiteθmax = 25.0°, θmin = 2.3°
ω–2θ scansh = 0→14
Absorption correction: ψ scan (North et al., 1968)k = −1→13
Tmin = 0.917, Tmax = 0.951l = −16→16
3917 measured reflections2 standard reflections every 60 min
3363 independent reflections intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5943P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3363 reflectionsΔρmax = 0.20 e Å3
284 parametersΔρmin = −0.22 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C20.11979 (16)0.26004 (19)0.25210 (14)0.0464 (5)
C30.14508 (15)0.30797 (18)0.34454 (13)0.0428 (4)
C40.21084 (15)0.41146 (17)0.35382 (12)0.0405 (4)
C50.24702 (14)0.45739 (17)0.27087 (12)0.0395 (4)
C60.21560 (15)0.40461 (18)0.18138 (12)0.0428 (4)
C70.05703 (19)0.1566 (2)0.24282 (17)0.0629 (6)
H70.04070.12470.18250.075*
C80.01978 (19)0.1025 (2)0.3209 (2)0.0701 (7)
H8−0.02190.03430.31340.084*
C90.04406 (18)0.1493 (2)0.41213 (18)0.0632 (6)
H90.01850.11170.46510.076*
C100.10473 (17)0.2492 (2)0.42434 (15)0.0521 (5)
H100.11990.27930.48550.063*
C170.25242 (17)0.4742 (2)0.09826 (14)0.0523 (5)
H17A0.19120.52350.07270.063*
H17B0.27350.42250.04790.063*
C180.35345 (17)0.54856 (19)0.13425 (13)0.0478 (5)
H180.35120.62130.09770.057*
C190.46829 (16)0.49449 (17)0.12880 (12)0.0446 (5)
C200.56613 (17)0.55995 (18)0.14608 (14)0.0472 (5)
C210.67332 (18)0.5143 (2)0.14224 (14)0.0528 (5)
H210.73690.56050.15490.063*
C220.68341 (19)0.3986 (2)0.11907 (14)0.0553 (5)
C230.5893 (2)0.3301 (2)0.10080 (15)0.0588 (6)
H230.59710.25230.08470.071*
C240.48327 (19)0.37731 (19)0.10646 (14)0.0524 (5)
H240.42020.33000.09510.063*
N10.15524 (13)0.31025 (16)0.17022 (11)0.0487 (4)
Cl10.55600 (5)0.70657 (5)0.17491 (5)0.0697 (2)
Cl20.81734 (6)0.33969 (7)0.11513 (6)0.0859 (3)
S10.32820 (5)0.58301 (5)0.26012 (4)0.05025 (17)
C110.23924 (16)0.46862 (18)0.44796 (13)0.0453 (5)
C140.2954 (3)0.5830 (3)0.61987 (18)0.0854 (9)
H140.312 (2)0.624 (3)0.678 (2)0.102*
C120.1794 (7)0.5609 (6)0.4804 (6)0.067 (2)0.55
H120.11760.58660.44150.080*0.55
C130.2032 (7)0.6189 (8)0.5661 (6)0.085 (3)0.55
H130.15810.67920.58540.102*0.55
C150.3566 (7)0.4863 (7)0.5933 (7)0.094 (3)0.55
H150.41630.45940.63400.112*0.55
C160.3298 (6)0.4293 (8)0.5068 (6)0.076 (3)0.55
H160.37220.36600.48900.091*0.55
C12'0.1533 (9)0.5268 (6)0.4904 (7)0.055 (2)0.45
H12'0.07940.52820.46370.066*0.45
C13'0.1868 (8)0.5831 (8)0.5765 (7)0.075 (3)0.45
H13'0.13190.62360.60680.090*0.45
C15'0.3783 (9)0.5283 (9)0.5745 (8)0.083 (3)0.45
H15'0.45270.52890.60040.099*0.45
C16'0.3486 (7)0.4717 (9)0.4887 (7)0.064 (3)0.45
H16'0.40480.43440.45740.077*0.45

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0389 (10)0.0567 (12)0.0433 (10)−0.0048 (9)−0.0001 (8)0.0028 (9)
C30.0359 (9)0.0532 (12)0.0393 (10)0.0020 (9)0.0028 (7)0.0059 (9)
C40.0377 (9)0.0506 (11)0.0334 (9)0.0059 (9)0.0035 (7)0.0029 (8)
C50.0373 (9)0.0471 (10)0.0340 (9)0.0011 (8)0.0030 (7)0.0011 (8)
C60.0387 (9)0.0563 (12)0.0332 (9)−0.0003 (9)0.0017 (7)0.0014 (9)
C70.0544 (13)0.0730 (16)0.0599 (13)−0.0185 (12)−0.0042 (10)−0.0018 (12)
C80.0527 (13)0.0715 (16)0.0858 (18)−0.0230 (12)0.0033 (12)0.0093 (14)
C90.0502 (12)0.0736 (16)0.0670 (15)−0.0064 (12)0.0114 (11)0.0221 (12)
C100.0467 (11)0.0646 (13)0.0459 (11)0.0017 (10)0.0092 (9)0.0101 (10)
C170.0532 (11)0.0699 (14)0.0339 (9)−0.0036 (11)0.0038 (8)0.0064 (10)
C180.0537 (11)0.0552 (12)0.0353 (9)−0.0033 (10)0.0087 (8)0.0079 (9)
C190.0540 (11)0.0492 (11)0.0314 (9)−0.0030 (9)0.0089 (8)0.0074 (8)
C200.0554 (12)0.0465 (11)0.0410 (10)−0.0023 (9)0.0124 (9)0.0054 (8)
C210.0524 (12)0.0611 (14)0.0461 (11)−0.0019 (10)0.0118 (9)0.0094 (10)
C220.0631 (13)0.0604 (14)0.0443 (11)0.0125 (11)0.0168 (10)0.0137 (10)
C230.0842 (17)0.0479 (12)0.0456 (11)0.0063 (12)0.0138 (11)0.0070 (10)
C240.0649 (13)0.0514 (12)0.0416 (10)−0.0075 (10)0.0077 (9)0.0049 (9)
N10.0466 (9)0.0625 (11)0.0364 (8)−0.0067 (8)−0.0004 (7)−0.0022 (8)
Cl10.0660 (4)0.0495 (3)0.0953 (5)−0.0083 (3)0.0177 (3)−0.0065 (3)
Cl20.0773 (4)0.0853 (5)0.0990 (5)0.0299 (4)0.0315 (4)0.0238 (4)
S10.0578 (3)0.0512 (3)0.0430 (3)−0.0080 (2)0.0117 (2)−0.0035 (2)
C110.0528 (11)0.0530 (12)0.0303 (9)−0.0003 (10)0.0046 (8)0.0038 (9)
C140.132 (3)0.085 (2)0.0384 (13)−0.019 (2)0.0008 (16)−0.0091 (14)
C120.086 (5)0.047 (4)0.064 (4)0.013 (3)−0.018 (3)−0.007 (3)
C130.148 (7)0.041 (5)0.062 (5)0.015 (4)−0.022 (4)−0.009 (3)
C150.076 (5)0.158 (9)0.043 (4)0.005 (5)−0.016 (3)−0.007 (5)
C160.070 (4)0.112 (7)0.044 (3)0.031 (4)−0.003 (3)−0.009 (4)
C12'0.077 (5)0.048 (5)0.042 (3)0.002 (4)0.012 (3)0.000 (3)
C13'0.144 (8)0.033 (5)0.050 (4)0.024 (4)0.028 (5)0.001 (3)
C15'0.083 (5)0.113 (7)0.051 (6)−0.027 (5)−0.005 (4)−0.012 (5)
C16'0.060 (4)0.088 (7)0.044 (5)−0.007 (4)−0.001 (3)−0.010 (4)

Geometric parameters (Å, °)

C2—N11.379 (2)C21—C221.378 (3)
C2—C71.405 (3)C21—H210.9300
C2—C31.420 (3)C22—C231.376 (3)
C3—C101.421 (3)C22—Cl21.735 (2)
C3—C41.425 (3)C23—C241.380 (3)
C4—C51.376 (2)C23—H230.9300
C4—C111.491 (3)C24—H240.9300
C5—C61.419 (3)C11—C121.374 (7)
C5—S11.7505 (19)C11—C16'1.381 (8)
C6—N11.304 (2)C11—C161.383 (7)
C6—C171.506 (3)C11—C12'1.391 (8)
C7—C81.362 (3)C14—C131.348 (7)
C7—H70.9300C14—C15'1.366 (8)
C8—C91.399 (4)C14—C13'1.385 (8)
C8—H80.9300C14—C151.395 (7)
C9—C101.361 (3)C14—H140.95 (3)
C9—H90.9300C12—C131.385 (7)
C10—H100.9300C12—H120.9300
C17—C181.529 (3)C13—H130.9300
C17—H17A0.9700C15—C161.395 (7)
C17—H17B0.9700C15—H150.9300
C18—C191.507 (3)C16—H160.9300
C18—S11.8557 (19)C12'—C13'1.401 (8)
C18—H180.9800C12'—H12'0.9300
C19—C201.391 (3)C13'—H13'0.9300
C19—C241.398 (3)C15'—C16'1.391 (8)
C20—C211.383 (3)C15'—H15'0.9300
C20—Cl11.741 (2)C16'—H16'0.9300
N1—C2—C7118.08 (18)C22—C23—H23120.1
N1—C2—C3122.72 (18)C24—C23—H23120.1
C7—C2—C3119.20 (18)C23—C24—C19121.6 (2)
C2—C3—C10118.26 (19)C23—C24—H24119.2
C2—C3—C4119.01 (16)C19—C24—H24119.2
C10—C3—C4122.72 (18)C6—N1—C2116.63 (16)
C5—C4—C3116.60 (16)C5—S1—C1892.02 (9)
C5—C4—C11121.01 (18)C12—C11—C16'109.8 (7)
C3—C4—C11122.39 (16)C12—C11—C16117.0 (6)
C4—C5—C6120.37 (18)C16'—C11—C1625.1 (5)
C4—C5—S1126.81 (15)C12—C11—C12'21.9 (5)
C6—C5—S1112.78 (13)C16'—C11—C12'120.6 (7)
N1—C6—C5124.62 (17)C16—C11—C12'117.7 (6)
N1—C6—C17122.59 (17)C12—C11—C4123.0 (4)
C5—C6—C17112.65 (17)C16'—C11—C4121.4 (5)
C8—C7—C2121.0 (2)C16—C11—C4119.9 (4)
C8—C7—H7119.5C12'—C11—C4117.8 (5)
C2—C7—H7119.5C13—C14—C15'117.7 (7)
C7—C8—C9120.2 (2)C13—C14—C13'20.3 (6)
C7—C8—H8119.9C15'—C14—C13'118.5 (7)
C9—C8—H8119.9C13—C14—C15120.9 (6)
C10—C9—C8120.7 (2)C15'—C14—C1525.8 (6)
C10—C9—H9119.6C13'—C14—C15111.8 (6)
C8—C9—H9119.6C13—C14—H14116.3 (19)
C9—C10—C3120.6 (2)C15'—C14—H14120.9 (19)
C9—C10—H10119.7C13'—C14—H14120.5 (19)
C3—C10—H10119.7C15—C14—H14122.7 (19)
C6—C17—C18107.96 (16)C11—C12—C13125.6 (8)
C6—C17—H17A110.1C11—C12—H12117.2
C18—C17—H17A110.1C13—C12—H12117.2
C6—C17—H17B110.1C14—C13—C12116.3 (8)
C18—C17—H17B110.1C14—C13—H13121.9
H17A—C17—H17B108.4C12—C13—H13121.9
C19—C18—C17116.36 (18)C14—C15—C16121.2 (8)
C19—C18—S1110.37 (13)C14—C15—H15119.4
C17—C18—S1104.75 (12)C16—C15—H15119.4
C19—C18—H18108.4C11—C16—C15118.8 (8)
C17—C18—H18108.4C11—C16—H16120.6
S1—C18—H18108.4C15—C16—H16120.6
C20—C19—C24116.24 (19)C11—C12'—C13'114.9 (9)
C20—C19—C18121.07 (18)C11—C12'—H12'122.5
C24—C19—C18122.69 (18)C13'—C12'—H12'122.5
C21—C20—C19123.2 (2)C14—C13'—C12'124.9 (9)
C21—C20—Cl1117.18 (16)C14—C13'—H13'117.5
C19—C20—Cl1119.57 (16)C12'—C13'—H13'117.5
C22—C21—C20118.2 (2)C14—C15'—C16'118.3 (11)
C22—C21—H21120.9C14—C15'—H15'120.9
C20—C21—H21120.9C16'—C15'—H15'120.9
C23—C22—C21120.9 (2)C11—C16'—C15'122.7 (11)
C23—C22—Cl2120.38 (18)C11—C16'—H16'118.7
C21—C22—Cl2118.75 (19)C15'—C16'—H16'118.7
C22—C23—C24119.8 (2)
N1—C2—C3—C10−179.85 (18)C7—C2—N1—C6−178.41 (19)
C7—C2—C3—C10−0.5 (3)C3—C2—N1—C61.0 (3)
N1—C2—C3—C4−0.7 (3)C4—C5—S1—C18168.69 (17)
C7—C2—C3—C4178.65 (19)C6—C5—S1—C18−13.48 (15)
C2—C3—C4—C5−0.9 (3)C19—C18—S1—C5−99.75 (15)
C10—C3—C4—C5178.20 (17)C17—C18—S1—C526.24 (15)
C2—C3—C4—C11178.78 (17)C5—C4—C11—C1282.4 (4)
C10—C3—C4—C11−2.1 (3)C3—C4—C11—C12−97.3 (4)
C3—C4—C5—C62.2 (3)C5—C4—C11—C16'−68.1 (5)
C11—C4—C5—C6−177.50 (17)C3—C4—C11—C16'112.3 (5)
C3—C4—C5—S1179.84 (14)C5—C4—C11—C16−97.3 (5)
C11—C4—C5—S10.2 (3)C3—C4—C11—C1683.0 (5)
C4—C5—C6—N1−2.1 (3)C5—C4—C11—C12'107.1 (4)
S1—C5—C6—N1179.96 (16)C3—C4—C11—C12'−72.5 (4)
C4—C5—C6—C17173.78 (17)C16'—C11—C12—C13−25.1 (9)
S1—C5—C6—C17−4.2 (2)C16—C11—C12—C131.1 (9)
N1—C2—C7—C8179.8 (2)C12'—C11—C12—C1399 (2)
C3—C2—C7—C80.4 (3)C4—C11—C12—C13−178.6 (6)
C2—C7—C8—C9−0.2 (4)C15'—C14—C13—C1224.1 (10)
C7—C8—C9—C100.1 (4)C13'—C14—C13—C12−74 (2)
C8—C9—C10—C3−0.2 (3)C15—C14—C13—C12−5.3 (10)
C2—C3—C10—C90.4 (3)C11—C12—C13—C142.3 (11)
C4—C3—C10—C9−178.69 (19)C13—C14—C15—C165.1 (12)
N1—C6—C17—C18−159.49 (18)C15'—C14—C15—C16−85 (2)
C5—C6—C17—C1824.6 (2)C13'—C14—C15—C1625.4 (11)
C6—C17—C18—C1990.0 (2)C12—C11—C16—C15−1.5 (10)
C6—C17—C18—S1−32.2 (2)C16'—C11—C16—C1577 (2)
C17—C18—C19—C20170.37 (17)C12'—C11—C16—C15−26.2 (10)
S1—C18—C19—C20−70.5 (2)C4—C11—C16—C15178.2 (6)
C17—C18—C19—C24−9.6 (3)C14—C15—C16—C11−1.4 (12)
S1—C18—C19—C24109.51 (18)C12—C11—C12'—C13'−67 (2)
C24—C19—C20—C21−0.2 (3)C16'—C11—C12'—C13'−1.9 (9)
C18—C19—C20—C21179.80 (17)C16—C11—C12'—C13'26.7 (8)
C24—C19—C20—Cl1−179.75 (14)C4—C11—C12'—C13'−177.2 (5)
C18—C19—C20—Cl10.2 (2)C13—C14—C13'—C12'96 (3)
C19—C20—C21—C220.8 (3)C15'—C14—C13'—C12'2.8 (12)
Cl1—C20—C21—C22−179.67 (15)C15—C14—C13'—C12'−24.8 (10)
C20—C21—C22—C23−0.4 (3)C11—C12'—C13'—C14−0.6 (11)
C20—C21—C22—Cl2−179.36 (15)C13—C14—C15'—C16'−25.4 (12)
C21—C22—C23—C24−0.6 (3)C13'—C14—C15'—C16'−2.3 (12)
Cl2—C22—C23—C24178.41 (15)C15—C14—C15'—C16'78.8 (19)
C22—C23—C24—C191.2 (3)C12—C11—C16'—C15'23.5 (10)
C20—C19—C24—C23−0.8 (3)C16—C11—C16'—C15'−88 (2)
C18—C19—C24—C23179.23 (18)C12'—C11—C16'—C15'2.3 (11)
C5—C6—N1—C20.4 (3)C4—C11—C16'—C15'177.4 (7)
C17—C6—N1—C2−175.03 (18)C14—C15'—C16'—C11−0.1 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···Cg2i0.932.923.818 (2)162
C21—H21···Cg3ii0.932.713.636 (2)172

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2782).

References

  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Doube, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Eithier, D., Falgueyert, J. P., Friesen, R. W., Girrard, M., Girrard, J., Tagari, P. & Yang, R. N. (1998). Bioorg. Med. Chem. Lett.8, 1255–1260. [PubMed]
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  • Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. [PubMed]
  • Maguire, M. P., Sheets, K. R., Mevety, K., Spada, A. P. & Ziberstein, A. (1994). J. Med. Chem.37, 2129–2137. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography