PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m904.
Published online 2009 July 11. doi:  10.1107/S1600536809026051
PMCID: PMC2977229

Bis{2-[(2-pyrid­yl)imino­meth­yl]phenolato}copper(II)

Abstract

In the title compound, [Cu(C12H9N2O)2], the CuII atom lies on a crystallographic inversion center and has a nearly square-planar geometry. The CuII center coordinates to the phenolic O and azomethine N atoms of the two symmetry-related 2-[(2-pyrid­yl)imino­meth­yl]phenolate ligands. The pyridyl N atoms do not coordinate to the CuII atom but participate in intra­molecular C—H(...)N hydrogen bonding. π–π stacking between the benzene rings and between the pyridyl rings [centroid–centroid distances 3.8142 (5) and 3.8142 (5) Å, respectively] links the mol­ecules into a chain propagating parallel to [100].

Related literature

For the preparation of the title compound by an electrochemical method, see: Castineiras et al. (1989 [triangle]), and by a solution method, see: Parashar et al. (1988 [triangle]). For the crystal structures of related compounds, see: Castineiras et al. (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m904-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H9N2O)2]
  • M r = 457.96
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m904-efi1.jpg
  • a = 3.8142 (5) Å
  • b = 11.217 (1) Å
  • c = 11.9001 (12) Å
  • α = 106.884 (2)°
  • β = 90.374 (1)°
  • γ = 90.289 (1)°
  • V = 487.16 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 298 K
  • 0.41 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.650, T max = 0.846
  • 2547 measured reflections
  • 1695 independent reflections
  • 1481 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.077
  • S = 1.07
  • 1695 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026051/pv2176sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026051/pv2176Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Jinan (B0605) for support of this work.

supplementary crystallographic information

Comment

The Schiff base, N-salicylidene 2-aminopyridine, has been widely studied as a potential tridentate ligand. The title compound has been prepared using an electrochemical method by Castineiras et al. (1989) starting from N-salicylidene 2-aminopyridine and copper. Parashar et al. (1988) reported that refluxing a mixture of Cu(OAc)2 (OAc = acetato) and N-salicylidene 2-aminopyridine in a 1:2 molar ratio resulted in a green complex having the same formula but with an octahedral geometry deduced from spectroscopic properties. We have found that a simple method of solution diffusion produces the brown title compound.

As shown in Fig. 1, the copper atom lies on a crystallographic inversion center and has a square planar geometry. The copper center coordinates to the phenolic oxygen and the azomethine nitrogen atoms of the two symmetry related groups. The pyridyl nitrogen atoms do not coordinate to the copper. The Cu—O bond lengths are 1.9212 (17) Å, and the Cu—N bond lengths are 2.0216 (19) Å, respectively, all similar to those reported in the related structures (Castineiras et al., 1989).

The interplane dihedral angles are found to be as follows: 31.60 (7)° between the N2O2 plane and the benzene ring, 54.28 (7)° between the N2O2 plane and the pyridyl ring, and 22.75 (9)° between the benzene and the pyridyl ring. The intramolecular hydrogen bond C1—H1···N1 (2.684 (3) Å, 105°, Table 1) further stabilizes the whole structure. The π-π stacking between the benzene rings (centroid to centroid, 3.8142 (5) Å) and the pyridyl rings (centroid to centroid, 3.8142 (5) Å) links the molecules into a one-dimensional chain (Fig. 2).

Experimental

To a green solution of salicylaldehyde (23 mg, 0.19 mmol) and Cu(OAc)2.H2O (11 mg, 0.05 mmol) in ethanol (7 ml) was added slowly a solution of 2-aminopyridine (21 mg, 0.22 mmol) in ethanol (1 ml). The resulting mixture was allowed to stand still and brown crystalline needles were grown after 1 day. IR (KBr): v = 3435, 1611, 1444, 1326, 1187 cm -1.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C).

Figures

Fig. 1.
The molecular structure, with atom labels and 25% probability thermal ellipsoids.
Fig. 2.
The one-dimensional chain constructed by the π-π stacking.

Crystal data

[Cu(C12H9N2O)2]Z = 1
Mr = 457.96F(000) = 235
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8142 (5) ÅCell parameters from 1475 reflections
b = 11.217 (1) Åθ = 2.2–27.5°
c = 11.9001 (12) ŵ = 1.15 mm1
α = 106.884 (2)°T = 298 K
β = 90.374 (1)°Needle, brown
γ = 90.289 (1)°0.41 × 0.17 × 0.15 mm
V = 487.16 (9) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer1695 independent reflections
Radiation source: fine-focus sealed tube1481 reflections with I > 2σ(I)
graphiteRint = 0.015
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −4→4
Tmin = 0.650, Tmax = 0.846k = −13→13
2547 measured reflectionsl = −9→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0266P)2 + 0.355P] where P = (Fo2 + 2Fc2)/3
1695 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.29 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.03882 (17)
N10.2225 (6)0.15806 (19)0.55001 (19)0.0400 (5)
N20.4891 (5)0.31537 (17)0.48298 (17)0.0305 (5)
O10.8250 (5)0.46999 (15)0.37229 (15)0.0413 (5)
C10.5395 (7)0.2344 (2)0.3821 (2)0.0331 (6)
H10.49270.15170.37740.040*
C20.6590 (7)0.2583 (2)0.2773 (2)0.0325 (6)
C30.7979 (7)0.3757 (2)0.2770 (2)0.0326 (6)
C40.9196 (7)0.3865 (3)0.1691 (2)0.0389 (6)
H41.01210.46230.16580.047*
C50.9057 (7)0.2886 (3)0.0689 (2)0.0459 (7)
H50.98700.2994−0.00100.055*
C60.7726 (8)0.1734 (3)0.0696 (2)0.0494 (7)
H60.76570.10720.00110.059*
C70.6524 (8)0.1595 (2)0.1727 (2)0.0427 (7)
H70.56350.08250.17380.051*
C80.4001 (6)0.2651 (2)0.5769 (2)0.0316 (6)
C90.5106 (7)0.3277 (3)0.6892 (2)0.0412 (6)
H90.63170.40300.70450.049*
C100.4374 (8)0.2761 (3)0.7780 (3)0.0494 (7)
H100.50850.31600.85470.059*
C110.2574 (8)0.1647 (3)0.7520 (3)0.0509 (8)
H110.20450.12780.81050.061*
C120.1583 (8)0.1094 (3)0.6381 (3)0.0491 (8)
H120.03940.03350.62080.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0584 (3)0.0241 (2)0.0318 (3)−0.0022 (2)0.0154 (2)0.00443 (18)
N10.0457 (14)0.0298 (11)0.0452 (13)−0.0023 (10)0.0071 (11)0.0116 (10)
N20.0343 (12)0.0261 (10)0.0306 (11)−0.0019 (9)0.0037 (9)0.0073 (9)
O10.0597 (13)0.0304 (9)0.0301 (10)−0.0079 (9)0.0143 (9)0.0029 (8)
C10.0363 (15)0.0233 (12)0.0375 (14)0.0001 (10)0.0005 (11)0.0054 (11)
C20.0341 (14)0.0286 (13)0.0312 (13)0.0052 (11)0.0027 (11)0.0030 (10)
C30.0335 (14)0.0330 (13)0.0290 (13)0.0046 (11)0.0036 (11)0.0051 (11)
C40.0384 (16)0.0444 (15)0.0339 (14)−0.0010 (12)0.0047 (12)0.0112 (12)
C50.0437 (17)0.065 (2)0.0258 (14)0.0025 (14)0.0037 (12)0.0081 (13)
C60.0526 (19)0.0517 (18)0.0318 (15)0.0027 (14)0.0007 (13)−0.0071 (13)
C70.0480 (17)0.0340 (14)0.0391 (15)0.0012 (12)0.0020 (13)−0.0006 (12)
C80.0324 (14)0.0280 (12)0.0363 (14)0.0036 (10)0.0045 (11)0.0120 (11)
C90.0401 (16)0.0438 (16)0.0404 (16)−0.0012 (12)−0.0032 (12)0.0136 (13)
C100.0501 (18)0.064 (2)0.0370 (16)0.0118 (15)0.0021 (13)0.0186 (14)
C110.0545 (19)0.0555 (19)0.0544 (19)0.0185 (15)0.0182 (15)0.0336 (16)
C120.0541 (19)0.0367 (15)0.063 (2)0.0027 (13)0.0179 (15)0.0240 (14)

Geometric parameters (Å, °)

Cu1—O11.9212 (17)C4—H40.9300
Cu1—O1i1.9212 (17)C5—C61.388 (4)
Cu1—N2i2.0216 (19)C5—H50.9300
Cu1—N22.0216 (19)C6—C71.363 (4)
N1—C81.330 (3)C6—H60.9300
N1—C121.339 (3)C7—H70.9300
N2—C11.294 (3)C8—C91.379 (4)
N2—C81.433 (3)C9—C101.373 (4)
O1—C31.310 (3)C9—H90.9300
C1—C21.426 (3)C10—C111.376 (4)
C1—H10.9300C10—H100.9300
C2—C71.406 (3)C11—C121.366 (4)
C2—C31.419 (3)C11—H110.9300
C3—C41.406 (3)C12—H120.9300
C4—C51.366 (4)
O1—Cu1—O1i180.000 (1)C4—C5—H5119.4
O1—Cu1—N2i90.50 (8)C6—C5—H5119.4
O1i—Cu1—N2i89.50 (7)C7—C6—C5118.6 (3)
O1—Cu1—N289.50 (7)C7—C6—H6120.7
O1i—Cu1—N290.50 (8)C5—C6—H6120.7
N2i—Cu1—N2180.000 (1)C6—C7—C2121.8 (3)
C8—N1—C12116.8 (2)C6—C7—H7119.1
C1—N2—C8115.7 (2)C2—C7—H7119.1
C1—N2—Cu1120.87 (16)N1—C8—C9123.6 (2)
C8—N2—Cu1123.30 (15)N1—C8—N2117.7 (2)
C3—O1—Cu1123.48 (16)C9—C8—N2118.7 (2)
N2—C1—C2127.1 (2)C10—C9—C8118.3 (3)
N2—C1—H1116.4C10—C9—H9120.9
C2—C1—H1116.4C8—C9—H9120.9
C7—C2—C3119.6 (2)C9—C10—C11119.2 (3)
C7—C2—C1118.2 (2)C9—C10—H10120.4
C3—C2—C1122.1 (2)C11—C10—H10120.4
O1—C3—C4120.4 (2)C12—C11—C10118.4 (3)
O1—C3—C2122.7 (2)C12—C11—H11120.8
C4—C3—C2116.9 (2)C10—C11—H11120.8
C5—C4—C3121.8 (3)N1—C12—C11123.8 (3)
C5—C4—H4119.1N1—C12—H12118.1
C3—C4—H4119.1C11—C12—H12118.1
C4—C5—C6121.3 (3)
O1—Cu1—N2—C1−29.5 (2)C3—C4—C5—C6−0.5 (4)
O1i—Cu1—N2—C1150.5 (2)C4—C5—C6—C70.5 (4)
O1—Cu1—N2—C8155.47 (19)C5—C6—C7—C20.2 (4)
O1i—Cu1—N2—C8−24.53 (19)C3—C2—C7—C6−0.8 (4)
N2i—Cu1—O1—C3−138.9 (2)C1—C2—C7—C6−177.8 (3)
N2—Cu1—O1—C341.1 (2)C12—N1—C8—C9−1.5 (4)
C8—N2—C1—C2−174.2 (2)C12—N1—C8—N2176.5 (2)
Cu1—N2—C1—C210.4 (4)C1—N2—C8—N1−30.6 (3)
N2—C1—C2—C7−171.7 (3)Cu1—N2—C8—N1144.60 (19)
N2—C1—C2—C311.3 (4)C1—N2—C8—C9147.5 (2)
Cu1—O1—C3—C4149.6 (2)Cu1—N2—C8—C9−37.2 (3)
Cu1—O1—C3—C2−32.7 (3)N1—C8—C9—C100.8 (4)
C7—C2—C3—O1−177.1 (2)N2—C8—C9—C10−177.2 (2)
C1—C2—C3—O1−0.2 (4)C8—C9—C10—C11−0.1 (4)
C7—C2—C3—C40.7 (4)C9—C10—C11—C120.0 (4)
C1—C2—C3—C4177.6 (2)C8—N1—C12—C111.5 (4)
O1—C3—C4—C5177.8 (2)C10—C11—C12—N1−0.8 (5)
C2—C3—C4—C5−0.1 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···N10.932.292.684 (3)105

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2176).

References

  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Castineiras, A., Castro, J. A., Duran, M. L., Garcia-Vazquez, J. A., Macias, A., Romero, J. & Sousa, A. (1989). Polyhedron, 8, 2543–2549.
  • Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography