PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1725.
Published online 2009 July 1. doi:  10.1107/S1600536809024131
PMCID: PMC2977221

(E)-3-Bromo-N′-(4-hydr­oxy-3-nitro­benzyl­idene)benzohydrazide

Abstract

The title compound, C14H10BrN3O4, was synthesized by the reaction of 4-hydr­oxy-3-nitro­benzaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The mol­ecule displays an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 4.6 (2)°. The nitro group is almost coplanar with the attached benzene ring [dihedral angle = 4.7 (2)°]. In the crystal structure, mol­ecules are linked into sheets parallel to (100) by inter­molecular N—H(...)O, O—H(...)N and O—H(...)O hydrogen bonds.

Related literature

For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009 [triangle]); Fun et al. (2008 [triangle]); Li & Ban (2009 [triangle]); Zhu et al. (2009 [triangle]); Yang (2007 [triangle]); You et al. (2008 [triangle]). For hydrazone compounds reported previously by our group, see: Qu et al. (2008 [triangle]); Yang et al. (2008 [triangle]); Cao & Lu (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1725-scheme1.jpg

Experimental

Crystal data

  • C14H10BrN3O4
  • M r = 364.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1725-efi1.jpg
  • a = 12.323 (1) Å
  • b = 13.697 (1) Å
  • c = 8.430 (1) Å
  • β = 97.133 (2)°
  • V = 1411.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.93 mm−1
  • T = 298 K
  • 0.23 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.552, T max = 0.592 (expected range = 0.519–0.556)
  • 8326 measured reflections
  • 2946 independent reflections
  • 1834 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.128
  • S = 1.04
  • 2946 reflections
  • 203 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024131/ci2834sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024131/ci2834Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Vital Foundation of Ankang University (Project No. 2008AKXY012) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 02 J K202) are gratefully acknowledged.

supplementary crystallographic information

Comment

Study on the crystal structures of hydrazone derivatives is a hot topic in structural chemistry. In the last few years, the crystal structures of a large number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008; Cao & Lu, 2009a,b), the title new hydrazone compound derived from the reaction of 4-hydroxy-3-nitrobenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide is reported.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings is 4.6 (2)°. The molecule displays an E configuration about the C═N bond. In the crystal structure, molecules are linked through intermolecular N—H···O, O—H···N, and O—H···O hydrogen bonds (Table 1) to form layers parallel to the (100) (Fig. 2).

Experimental

The title compound was prepared by refluxing equimolar quantities of 4-hydroxy-3-nitrobenzaldehyde with 3-bromobenzohydrazide in methanol. Colourless block-like crystals were formed by slow evaporation of the solution in air.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.93 Å, O-H distance of 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O). A rotating group model was used for the OH group.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% displacement ellipsoids.
Fig. 2.
The molecular packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.

Crystal data

C14H10BrN3O4F(000) = 728
Mr = 364.16Dx = 1.713 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1828 reflections
a = 12.323 (1) Åθ = 2.7–24.5°
b = 13.697 (1) ŵ = 2.93 mm1
c = 8.430 (1) ÅT = 298 K
β = 97.133 (2)°Block, colourless
V = 1411.9 (2) Å30.23 × 0.21 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2946 independent reflections
Radiation source: fine-focus sealed tube1834 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 26.6°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −14→15
Tmin = 0.552, Tmax = 0.592k = −16→17
8326 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0583P)2 + 0.7063P] where P = (Fo2 + 2Fc2)/3
2946 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.66 e Å3
1 restraintΔρmin = −0.76 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.07300 (4)0.14793 (4)0.14031 (6)0.0779 (2)
N10.6951 (2)0.3333 (2)0.5669 (3)0.0418 (7)
N20.7511 (2)0.2683 (2)0.4801 (3)0.0402 (7)
N30.6518 (3)0.7702 (2)0.5895 (4)0.0525 (8)
O10.7225 (3)0.7781 (2)0.5036 (4)0.0735 (9)
O20.6110 (4)0.8411 (2)0.6463 (5)0.0963 (13)
O30.4820 (2)0.7296 (2)0.7858 (4)0.0660 (8)
H30.43900.70820.84400.099*
O40.7360 (3)0.14917 (19)0.6595 (3)0.0731 (10)
C10.6432 (3)0.4996 (2)0.5965 (4)0.0356 (8)
C20.6664 (3)0.5944 (2)0.5594 (4)0.0366 (8)
H2A0.71630.60680.48780.044*
C30.6159 (3)0.6722 (3)0.6279 (4)0.0389 (8)
C40.5363 (3)0.6554 (3)0.7283 (4)0.0444 (9)
C50.5151 (3)0.5582 (3)0.7673 (4)0.0471 (9)
H50.46450.54520.83780.057*
C60.5678 (3)0.4816 (3)0.7031 (4)0.0431 (9)
H60.55300.41770.73110.052*
C70.6986 (3)0.4217 (2)0.5201 (4)0.0390 (8)
H70.73740.43680.43540.047*
C80.7693 (3)0.1783 (3)0.5364 (4)0.0415 (9)
C90.8344 (3)0.1142 (2)0.4401 (4)0.0373 (8)
C100.9097 (3)0.1540 (3)0.3480 (4)0.0412 (9)
H100.91980.22120.34410.049*
C110.9692 (3)0.0920 (3)0.2625 (4)0.0475 (9)
C120.9556 (3)−0.0073 (3)0.2673 (5)0.0562 (11)
H120.9957−0.04820.20840.067*
C130.8825 (3)−0.0454 (3)0.3592 (5)0.0541 (11)
H130.8734−0.11270.36330.065*
C140.8215 (3)0.0146 (3)0.4469 (4)0.0442 (9)
H140.7723−0.01230.50980.053*
H20.762 (4)0.284 (3)0.380 (2)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0654 (4)0.0956 (4)0.0811 (4)0.0124 (3)0.0426 (3)−0.0031 (3)
N10.0517 (19)0.0410 (18)0.0368 (16)0.0099 (14)0.0213 (15)0.0001 (13)
N20.0514 (18)0.0363 (16)0.0370 (17)0.0089 (14)0.0211 (15)−0.0005 (13)
N30.063 (2)0.0412 (19)0.055 (2)0.0061 (17)0.0153 (18)−0.0007 (15)
O10.079 (2)0.0502 (18)0.098 (2)−0.0069 (15)0.036 (2)0.0067 (15)
O20.142 (3)0.0425 (19)0.117 (3)0.0176 (19)0.066 (3)−0.0030 (17)
O30.0595 (19)0.0610 (18)0.084 (2)0.0089 (14)0.0343 (16)−0.0240 (16)
O40.136 (3)0.0419 (16)0.0512 (18)0.0135 (16)0.0520 (19)0.0077 (12)
C10.0356 (19)0.0390 (19)0.0329 (19)0.0037 (15)0.0067 (16)−0.0029 (14)
C20.038 (2)0.040 (2)0.0325 (18)0.0033 (16)0.0098 (16)0.0017 (15)
C30.040 (2)0.039 (2)0.039 (2)0.0015 (15)0.0091 (16)−0.0020 (15)
C40.040 (2)0.048 (2)0.046 (2)0.0051 (17)0.0109 (18)−0.0127 (17)
C50.046 (2)0.053 (2)0.046 (2)−0.0032 (18)0.0214 (18)−0.0066 (17)
C60.047 (2)0.041 (2)0.044 (2)−0.0028 (17)0.0170 (18)−0.0011 (16)
C70.044 (2)0.042 (2)0.0338 (19)0.0043 (16)0.0142 (16)0.0030 (15)
C80.054 (2)0.038 (2)0.036 (2)0.0040 (17)0.0182 (18)−0.0010 (15)
C90.043 (2)0.0367 (19)0.0326 (19)0.0069 (15)0.0054 (16)−0.0014 (14)
C100.042 (2)0.043 (2)0.039 (2)0.0085 (16)0.0062 (17)−0.0027 (16)
C110.044 (2)0.055 (2)0.045 (2)0.0103 (18)0.0102 (19)−0.0068 (18)
C120.053 (3)0.056 (3)0.060 (3)0.019 (2)0.008 (2)−0.021 (2)
C130.059 (3)0.036 (2)0.065 (3)0.0088 (19)−0.002 (2)−0.0138 (18)
C140.046 (2)0.042 (2)0.044 (2)0.0005 (17)0.0044 (18)−0.0029 (17)

Geometric parameters (Å, °)

Br1—C111.900 (4)C4—C51.404 (5)
N1—C71.276 (4)C5—C61.380 (5)
N1—N21.389 (4)C5—H50.93
N2—C81.329 (4)C6—H60.93
N2—H20.898 (10)C7—H70.93
N3—O11.206 (4)C8—C91.495 (5)
N3—O21.219 (4)C9—C141.376 (5)
N3—C31.462 (5)C9—C101.392 (5)
O3—C41.341 (4)C10—C111.381 (5)
O3—H30.82C10—H100.93
O4—C81.229 (4)C11—C121.373 (6)
C1—C21.374 (5)C12—C131.362 (6)
C1—C61.393 (5)C12—H120.93
C1—C71.459 (5)C13—C141.388 (5)
C2—C31.394 (5)C13—H130.93
C2—H2A0.93C14—H140.93
C3—C41.392 (5)
C7—N1—N2114.0 (3)C1—C6—H6119.9
C8—N2—N1118.6 (3)N1—C7—C1121.5 (3)
C8—N2—H2121 (3)N1—C7—H7119.3
N1—N2—H2119 (3)C1—C7—H7119.3
O1—N3—O2121.9 (4)O4—C8—N2122.9 (3)
O1—N3—C3118.5 (3)O4—C8—C9121.7 (3)
O2—N3—C3119.6 (3)N2—C8—C9115.4 (3)
C4—O3—H3109.5C14—C9—C10120.0 (3)
C2—C1—C6119.2 (3)C14—C9—C8119.2 (3)
C2—C1—C7118.0 (3)C10—C9—C8120.9 (3)
C6—C1—C7122.8 (3)C11—C10—C9119.0 (3)
C1—C2—C3120.8 (3)C11—C10—H10120.5
C1—C2—H2A119.6C9—C10—H10120.5
C3—C2—H2A119.6C12—C11—C10121.3 (4)
C4—C3—C2120.7 (3)C12—C11—Br1120.5 (3)
C4—C3—N3122.8 (3)C10—C11—Br1118.2 (3)
C2—C3—N3116.6 (3)C13—C12—C11119.2 (4)
O3—C4—C3121.1 (3)C13—C12—H12120.4
O3—C4—C5121.2 (3)C11—C12—H12120.4
C3—C4—C5117.7 (3)C12—C13—C14121.0 (4)
C6—C5—C4121.3 (3)C12—C13—H13119.5
C6—C5—H5119.4C14—C13—H13119.5
C4—C5—H5119.4C9—C14—C13119.5 (4)
C5—C6—C1120.2 (3)C9—C14—H14120.2
C5—C6—H6119.9C13—C14—H14120.2

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.90 (1)2.06 (2)2.914 (4)159 (4)
O3—H3···N1ii0.822.562.999 (4)115
O3—H3···O4ii0.822.302.992 (4)142

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2834).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587. [PMC free article] [PubMed]
  • Cao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600. [PMC free article] [PubMed]
  • Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. [PMC free article] [PubMed]
  • Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466. [PMC free article] [PubMed]
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [PMC free article] [PubMed]
  • Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, D.-S. (2007). J. Chem. Crystallogr.37, 343–348.
  • Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. [PMC free article] [PubMed]
  • You, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem.82, 2215–2219.
  • Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography