PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m909–m910.
Published online 2009 July 11. doi:  10.1107/S1600536809026713
PMCID: PMC2977207

Aqua­(2,2′-bipyridine-κ2 N,N′)bis­(thio­phene-2-carboxyl­ato-κO)copper(II)

Abstract

In the title complex, [Cu(C5H3O2S)2(C10H8N2)(H2O)], the CuII atom is in a distorted square-pyramidal environment, with an Addison τ parameter of 0.07. The coordination geometry is defined by two nitro­gen donors from the 2,2′-bipyridine ligand, two O atoms from two monodentate thio­phene-2-carboxyl­ate ligands and one O atom from the aqua ligand. The latter occupies the elongated apical position. This is different from the related structure of aqua­(1,10-phenanthroline)bis­(thio­phene-2-carboxyl­ato)copper(II) where a carboxyl­ate O atom is in the apical position [Feng et al. (2005 [triangle]). Z. Kristallogr. New Cryst. Struct. 220, 429–430]. The uncoordinated carboxyl­ate O atoms form intra- and inter­molecular hydrogen bonds to the aqua ligand. Two neighbouring 2,2′-bipyridine ligands form a π-stack, with a centroid–centroid distance of 3.683 (2) Å.

Related literature

Thio­phenes substituted in the 2-position are an important constituent of the drugs methapyrilene, temidap, tienilic acid and temocillin (Rance & Damani, 1989 [triangle]). Metal complexes containing the thio­phene unit have exhibited enhanced anti-amoebic activity (Bharti et al., 2003 [triangle]). For the use of thio­phene-2-carboxylic acid (Htpc) to prepare single mol­ecular magnet (SMM) and photoluminescence materials, see: Kuroda-Sowa et al. (2003 [triangle]); Teotonio et al. (2004 [triangle]). For the thermal behavior of metal–tpc complexes, see: Lumme & Korvola (1975 [triangle]). For the structures of 2-thio­phene­carboxyl­ate complexes, see: Feng et al. (2005 [triangle]); Panagoulis et al. (2007 [triangle]); Byrnes et al. (2004 [triangle]); Yin & Sun (2005 [triangle]); Yin et al. (2004 [triangle]). For hydrogen bonds from the aqua ligand to uncoordinated carboxyl O atoms, see: Habib & Janiak (2008 [triangle]); Wisser & Janiak (2007a [triangle],b [triangle]); Janiak (2000 [triangle]). For details of the Addison τ parameter, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m909-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H3O2S)2(C10H8N2)(H2O)]
  • M r = 492.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m909-efi1.jpg
  • a = 6.8458 (5) Å
  • b = 18.3799 (15) Å
  • c = 16.8421 (12) Å
  • β = 101.5164 (19)°
  • V = 2076.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 123 K
  • 0.35 × 0.22 × 0.18 mm

Data collection

  • Rigaku R-AXIS Spider image-plate detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.661, T max = 0.801
  • 32855 measured reflections
  • 4224 independent reflections
  • 3637 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.099
  • S = 1.05
  • 4224 reflections
  • 277 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Crystal Impact, 2009 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026713/fj2230sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026713/fj2230Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support through DFG grant Ja466/14–1 is acknowledged.

supplementary crystallographic information

Comment

Thiophenes substituted in the 2-position are an important constituent of the drugs methapyrilene, temidap, tienilic acid and temocillin (Rance & Damani, 1989). Metal complexes containing the thiophene moiety have exhibited enhanced antiamoebic activity (Bharti et al., 2003). Knowledge of the structural peculiarities of a biologically active molecule and its inherent 3 -dimensional structure is a necessary condition for investigating the interaction with metal ions and for designing new compounds. Recently, thiophene-2-carboxylic acid (Htpc) has been used to prepare single molecular magnet (SMM) and photoluminescence materials (Kuroda-Sowa et al., 2003; Teotonio et al., 2004). The thermal behavior of metal-tpc complexes was studied (Lumme & Korvola, 1975). Single crystal structures of 2- thiophenecarboxylate complexes are still limited (Feng et al., 2005), with recent additions of a tpc-bridged di-copper (Panagoulis et al., 2007), di-molybdenum (Byrnes et al., 2004), di-terbium and di-europium complex (Yin & Sun, 2005; Yin et al., 2004).

The molecular structure of the title complex is shown in Fig. 1. The Cu atoms are in a square-pyramidal environment with a long apical Cu—OH2 bond due to the Jahn-Teller effect. No relevant π—π or C—H···π interactions are found between the thiophene rings only between bipyridine ligands (Fig. 2). There, the π-stacking interactions can be viewed as strong because of the rather short centroid-centroid contacts (3.683 Å), small slip angles (22.9°) and short interplanar separation (3.4 Å) which translate into a sizable overlap of the near parallel aromatic planes (interplanar angle 2.5°) (Janiak, 2000). The intra- and intermolecular hydrogen bonds from the aqua ligand to the uncoordinated carboxyl oxygen atoms are normal (Habib & Janiak, 2008; Wisser & Janiak, 2007a; Wisser & Janiak, 2007b).

Experimental

A mixture of copper acetate, Cu(CH3COO)2. H2O (57.9 mg, 0.29 mmol) and thiophene-2-carboxylic acid, Htpc (76.9 mg, 0.6 mmol) in 10 ml water was added to a 10 ml CH3OH solution of 2,2'-bipyridine (48.4 mg, 0.31 mmol). Then the resulting solution was set aside and the solvent allowed to evaporate at room temperature. After three days, blue rod-shaped crystals were obtained in (yield 99 mg, 32% based on Htpc). Elemental analysis C22H16CuN2O5S2(516.05) calcd. C 51.20, H 3.13, N 5.43, S 12.43; found: C 50.97, H 3.16, N 5.33, S 12.20%.

Refinement

Hydrogen atoms for aromatic CH were positioned geometrically (C—H = 0.94 Å) and refined using a riding model. Protic hydrogen atoms of the aqua ligand were found and refined with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
: Asymmetric molecular unit of [Cu(C4H3SCOO)2(C10H8N2)(H2O)] in a perspective view with thermal ellipsoids (at 50% probability); intramolecular hydrogen bond as dashed line.
Fig. 2.
: Crystal packing of [Cu(C4H3SCOO)2(C10H8N2)(H2O)] projected onto the bc-plane.

Crystal data

[Cu(C5H3O2S)2(C10H8N2)(H2O)]F(000) = 1004
Mr = 492.01Dx = 1.574 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 28386 reflections
a = 6.8458 (5) Åθ = 3.0–27.5°
b = 18.3799 (15) ŵ = 1.29 mm1
c = 16.8421 (12) ÅT = 123 K
β = 101.5164 (19)°Column, blue
V = 2076.5 (3) Å30.35 × 0.22 × 0.18 mm
Z = 4

Data collection

Rigaku R-AXIS Spider image-plate detector diffractometer4224 independent reflections
Radiation source: fine-focus sealed tube3637 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→8
Tmin = 0.661, Tmax = 0.801k = −22→22
32855 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0489P)2 + 2.2127P] where P = (Fo2 + 2Fc2)/3
4224 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = −0.59 e Å3

Special details

Experimental. IR (ATR): 3315 (m, br, νO-H, H-bonded), 3075 (m, sh, νC-H, aromatic), 3115 (m, sh) 1557 (s, sh, νasymCO2, ionically bonded to COO-Cu), 1520 (s, sh, νasymCO2, intramolecularly H-bonded), 1470 (m, sh) 1422 (s, sh) 1370 (s, sh, νsymCO2), 1336 (m, sh) (νC-O, free), 1312 (w, br, νC-O···H—O, H-bonded), 1224 (m, sh, νC-O), 1115 (s, sh, νC-N), 1056 (m, sh), 1026 (s, sh), 982 (m, sh), 911 (m, sh), 860 (s, sh), 808 (m, sh), 770 (s, sh), 713 (s, sh), 659 (w, sh), 631 (w, br), 539 (w, sh, νCu-O), 506 (m, sh), 461 (m, sh), 412 (s, sh, νCu-N) cm-1.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.67488 (4)0.151034 (16)0.393556 (18)0.02638 (11)
S10.63575 (13)0.46085 (4)0.37885 (5)0.0465 (2)
S20.31914 (12)0.17767 (6)0.10820 (5)0.0497 (2)
O10.5925 (3)0.25157 (10)0.40169 (12)0.0373 (4)
O20.8271 (3)0.31699 (10)0.35780 (12)0.0355 (4)
O30.5534 (3)0.15076 (10)0.27585 (11)0.0331 (4)
O40.2930 (3)0.12147 (11)0.32959 (11)0.0351 (4)
O50.9860 (3)0.18398 (12)0.38761 (14)0.0391 (5)
H5A0.964 (6)0.221 (2)0.374 (2)0.059*
H5B1.062 (6)0.168 (2)0.368 (2)0.059*
N10.7125 (3)0.04250 (12)0.39954 (12)0.0266 (4)
N20.7215 (3)0.13725 (11)0.51474 (12)0.0277 (4)
C10.7038 (4)−0.00185 (15)0.33635 (17)0.0340 (6)
H10.68550.01860.28360.041*
C20.7204 (4)−0.07660 (16)0.34483 (19)0.0391 (6)
H20.7140−0.10690.29870.047*
C30.7463 (4)−0.10622 (15)0.4214 (2)0.0395 (7)
H30.7583−0.15740.42880.047*
C40.7545 (4)−0.06063 (14)0.48737 (18)0.0324 (6)
H40.7713−0.08020.54050.039*
C50.7381 (3)0.01361 (13)0.47514 (15)0.0256 (5)
C60.7470 (3)0.06754 (13)0.54036 (15)0.0252 (5)
C70.7786 (4)0.05039 (16)0.62249 (16)0.0331 (6)
H70.79310.00110.63980.040*
C80.7884 (4)0.10584 (18)0.67850 (17)0.0398 (7)
H80.81170.09510.73480.048*
C90.7643 (5)0.17670 (18)0.65216 (18)0.0423 (7)
H90.77120.21550.68990.051*
C100.7296 (4)0.19039 (15)0.56982 (17)0.0371 (6)
H100.71080.23930.55160.045*
C110.6649 (4)0.30992 (14)0.37863 (14)0.0289 (5)
C120.5375 (4)0.37527 (14)0.38065 (15)0.0300 (5)
C130.3272 (5)0.37346 (17)0.38295 (17)0.0406 (7)
H130.24570.33160.38300.049*
C140.2658 (5)0.45070 (18)0.3853 (2)0.0508 (8)
H140.13360.46470.38780.061*
C150.4127 (5)0.49975 (17)0.3835 (2)0.0488 (8)
H150.39300.55090.38470.059*
C160.3672 (4)0.13855 (13)0.27060 (15)0.0285 (5)
C170.2351 (4)0.14483 (13)0.18962 (16)0.0300 (5)
C180.0315 (4)0.12344 (15)0.16881 (17)0.0351 (6)
H18−0.04380.10360.20530.042*
C19−0.0425 (5)0.13653 (18)0.0838 (2)0.0492 (8)
H19−0.17540.12590.05730.059*
C200.0926 (5)0.1648 (2)0.04594 (19)0.0513 (8)
H200.06570.1767−0.01010.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.02852 (17)0.02612 (17)0.02524 (17)0.00260 (12)0.00714 (12)0.00575 (12)
S10.0513 (5)0.0344 (4)0.0543 (5)0.0013 (3)0.0115 (4)0.0014 (3)
S20.0458 (4)0.0696 (6)0.0346 (4)0.0073 (4)0.0100 (3)0.0159 (4)
O10.0436 (11)0.0269 (9)0.0451 (11)0.0056 (8)0.0177 (9)0.0092 (8)
O20.0343 (10)0.0339 (10)0.0397 (11)0.0042 (8)0.0108 (8)0.0075 (8)
O30.0298 (9)0.0420 (11)0.0278 (9)0.0031 (8)0.0064 (7)0.0086 (8)
O40.0352 (10)0.0409 (11)0.0318 (10)0.0069 (8)0.0131 (8)0.0117 (8)
O50.0311 (10)0.0376 (11)0.0523 (13)0.0088 (9)0.0172 (9)0.0111 (10)
N10.0231 (10)0.0294 (11)0.0269 (11)0.0020 (8)0.0041 (8)0.0024 (8)
N20.0280 (10)0.0299 (11)0.0261 (11)−0.0029 (9)0.0078 (8)0.0020 (9)
C10.0312 (13)0.0391 (14)0.0308 (14)0.0027 (11)0.0042 (11)−0.0032 (11)
C20.0318 (14)0.0390 (15)0.0462 (17)0.0003 (12)0.0070 (12)−0.0111 (13)
C30.0303 (14)0.0276 (13)0.0612 (19)−0.0002 (11)0.0102 (13)−0.0010 (13)
C40.0243 (12)0.0282 (13)0.0446 (15)0.0018 (10)0.0061 (11)0.0085 (11)
C50.0163 (10)0.0302 (12)0.0298 (12)−0.0006 (9)0.0031 (9)0.0050 (10)
C60.0186 (11)0.0306 (12)0.0265 (12)−0.0020 (9)0.0047 (9)0.0050 (10)
C70.0273 (12)0.0415 (15)0.0300 (13)−0.0001 (11)0.0044 (10)0.0094 (11)
C80.0358 (15)0.0585 (18)0.0254 (13)−0.0037 (13)0.0064 (11)0.0026 (13)
C90.0448 (16)0.0499 (17)0.0327 (15)−0.0066 (14)0.0088 (12)−0.0107 (13)
C100.0449 (16)0.0333 (14)0.0347 (15)−0.0039 (12)0.0115 (12)−0.0035 (12)
C110.0346 (14)0.0301 (13)0.0207 (12)0.0040 (11)0.0024 (10)0.0043 (10)
C120.0379 (14)0.0268 (12)0.0257 (12)0.0017 (11)0.0073 (10)0.0048 (10)
C130.0475 (16)0.0420 (16)0.0388 (15)0.0290 (14)0.0243 (13)0.0167 (13)
C140.0514 (19)0.0436 (17)0.064 (2)0.0156 (15)0.0272 (17)0.0092 (15)
C150.063 (2)0.0322 (15)0.0548 (19)0.0135 (14)0.0199 (16)0.0066 (14)
C160.0322 (13)0.0258 (12)0.0285 (13)0.0059 (10)0.0088 (10)0.0048 (10)
C170.0350 (14)0.0272 (12)0.0280 (13)0.0054 (11)0.0067 (11)0.0058 (10)
C180.0321 (13)0.0338 (14)0.0334 (14)0.0017 (11)−0.0081 (11)0.0038 (11)
C190.0461 (17)0.0504 (18)0.0441 (18)−0.0021 (15)−0.0081 (14)0.0014 (15)
C200.056 (2)0.066 (2)0.0277 (15)0.0155 (17)−0.0012 (14)0.0041 (14)

Geometric parameters (Å, °)

Cu—O11.9447 (18)C4—C51.381 (3)
Cu—O31.9909 (19)C4—H40.9500
Cu—N12.011 (2)C5—C61.472 (4)
Cu—N22.018 (2)C6—C71.393 (3)
Cu—O52.236 (2)C7—C81.381 (4)
S1—C151.702 (3)C7—H70.9500
S1—C121.714 (3)C8—C91.375 (4)
S2—C171.700 (3)C8—H80.9500
S2—C201.706 (3)C9—C101.383 (4)
O1—C111.274 (3)C9—H90.9500
O2—C111.236 (3)C10—H100.9500
O3—C161.280 (3)C11—C121.489 (4)
O4—C161.243 (3)C12—C131.448 (4)
O5—H5A0.73 (4)C13—C141.483 (4)
O5—H5B0.73 (4)C13—H130.9500
N1—C11.332 (3)C14—C151.355 (5)
N1—C51.358 (3)C14—H140.9500
N2—C101.340 (3)C15—H150.9500
N2—C61.352 (3)C16—C171.483 (4)
C1—C21.384 (4)C17—C181.423 (4)
C1—H10.9500C18—C191.440 (4)
C2—C31.378 (4)C18—H180.9500
C2—H20.9500C19—C201.330 (5)
C3—C41.384 (4)C19—H190.9500
C3—H30.9500C20—H200.9500
O1—Cu—O390.18 (8)C8—C7—H7120.4
O1—Cu—N1167.13 (8)C6—C7—H7120.4
O3—Cu—N194.08 (8)C9—C8—C7119.5 (3)
O1—Cu—N292.15 (8)C9—C8—H8120.3
O3—Cu—N2163.16 (8)C7—C8—H8120.3
N1—Cu—N280.33 (8)C8—C9—C10118.8 (3)
O1—Cu—O592.18 (8)C8—C9—H9120.6
O3—Cu—O599.70 (8)C10—C9—H9120.6
N1—Cu—O599.04 (8)N2—C10—C9122.5 (3)
N2—Cu—O596.87 (8)N2—C10—H10118.8
C15—S1—C1291.48 (15)C9—C10—H10118.8
C17—S2—C2091.96 (15)O2—C11—O1126.9 (2)
C11—O1—Cu129.96 (17)O2—C11—C12119.0 (2)
C16—O3—Cu106.35 (16)O1—C11—C12114.0 (2)
Cu—O5—H5A97 (3)C13—C12—C11124.9 (2)
Cu—O5—H5B133 (3)C13—C12—S1114.7 (2)
H5A—O5—H5B110 (4)C11—C12—S1120.4 (2)
C1—N1—C5119.1 (2)C12—C13—C14105.5 (3)
C1—N1—Cu125.59 (18)C12—C13—H13127.3
C5—N1—Cu115.21 (17)C14—C13—H13127.3
C10—N2—C6119.0 (2)C15—C14—C13114.9 (3)
C10—N2—Cu125.80 (18)C15—C14—H14122.5
C6—N2—Cu115.21 (17)C13—C14—H14122.5
N1—C1—C2122.4 (3)C14—C15—S1113.4 (2)
N1—C1—H1118.8C14—C15—H15123.3
C2—C1—H1118.8S1—C15—H15123.3
C3—C2—C1118.8 (3)O4—C16—O3123.3 (2)
C3—C2—H2120.6O4—C16—C17118.9 (2)
C1—C2—H2120.6O3—C16—C17117.8 (2)
C2—C3—C4119.3 (3)C18—C17—C16126.3 (2)
C2—C3—H3120.4C18—C17—S2111.8 (2)
C4—C3—H3120.4C16—C17—S2121.8 (2)
C5—C4—C3119.3 (3)C17—C18—C19109.4 (3)
C5—C4—H4120.4C17—C18—H18125.3
C3—C4—H4120.4C19—C18—H18125.3
N1—C5—C4121.2 (2)C20—C19—C18113.7 (3)
N1—C5—C6114.5 (2)C20—C19—H19123.2
C4—C5—C6124.3 (2)C18—C19—H19123.2
N2—C6—C7121.1 (2)C19—C20—S2113.2 (2)
N2—C6—C5114.6 (2)C19—C20—H20123.4
C7—C6—C5124.3 (2)S2—C20—H20123.4
C8—C7—C6119.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.73 (4)1.99 (4)2.682 (3)160 (4)
O5—H5B···O4i0.73 (4)2.02 (4)2.741 (3)171 (4)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2230).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Bharti, S.-N., Naqvi, F. & Azam, A. (2003). Bioorg. Med. Chem. Lett.13, 689-692. [PubMed]
  • Byrnes, M. J., Chisholm, M. H., Clark, R. J. H., Gallucci, J. C., Hadad, C. M. & Patmore, N. J. (2004). Inorg. Chem.43, 6334–6344. [PubMed]
  • Crystal Impact (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Feng, D.-M., He, H.-Y., Jin, H.-X. & Zhu, L.-G. (2005). Z. Kristallogr. New Ctyst. Struct.220, 429-430.
  • Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199. [PMC free article] [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  • Kuroda-Sowa, T., Nogami, T., Konaka, H., Maekawa, M., Munakata, M., Miyasaka, H. & Yamashita, M. (2003). Polyhedron, 22, 1795–1801.
  • Lumme, P. & Korvola, M. L. (1975). Thermochim. Acta, 13, 419–439.
  • Panagoulis, D., Pontiki, E., Skeva, E., Raptopoulou, C., Girousi, S., Hadjipavlou-Litina, D. & Dendrinou-Samara, C. (2007). J. Inorg. Biochem.101, 623–634. [PubMed]
  • Rance, D. J. & Damani, L. A. (1989). Editors. Sulfur-Containing Drugs and Related Organic Compounds, Vol. 1, part B, ch. 9. Chichester: Ellis Horwood.
  • Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Teotonio, E. E. S., Felinto, M. C. F. C., Brito, M. F., Malta, O. L., Trindade, A. C., Najjar, R. & Strek, W. (2004). Inorg. Chim. Acta, 357, 451–460.
  • Westrip, S. P. (2009). publCIF In preparation.
  • Wisser, B. & Janiak, C. (2007a). Acta Cryst. E63, m1732–m1733.
  • Wisser, B. & Janiak, C. (2007b). Acta Cryst. E63, o2871–o2872.
  • Yin, M. & Sun, J. (2005). J. Coord. Chem.58, 335–342.
  • Yin, M.-C., Yuan, L.-J., Ai, C.-C., Wang, C.-W., Yuan, E.-T. & Sun, J.-T. (2004). Polyhedron, 23, 529–536.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography