PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m915–m916.
Published online 2009 July 11. doi:  10.1107/S160053680902666X
PMCID: PMC2977204

catena-Poly[[[μ-aqua-penta­aqua­dizinc(II)]-μ4-benzene-1,2,4,5-tetra­carboxyl­ato] dihydrate]

Abstract

The asymmetric unit of the title compound, {[Zn2(C10H2O8)(H2O)6]·2H2O}n, contains two distinct Zn atoms joined by a bridging water molecule and two bridging carboxyl­ate groups belonging to distinct halves of benzene-1,2,4,5-tetra­carboxyl­ate (tbec) tetra­anionic ligands, both lying on crystallographic inversion centres. The structure of this new isopolymorphic one-dimensional coordination polymer features asymmetric bimetallic octa­hedral knots. O—H(...)O hydrogen bonds between water molecules and carboxylate O atoms help to consolidate the crystal packing.

Related literature

For background to 1,2,4,5,-benzene­tetra­carboxylate anions, see: Robl (1987 [triangle]); Wei et al. (1991 [triangle]). For their use in constructing stable metal-organic frameworks, see: Du et al. (2007 [triangle]); Rochon & Massarweh (2000 [triangle]); Wang et al. (2007 [triangle]); Wen et al. (2007 [triangle]); Yang et al. (2003 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m915-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C10H2O8)(H2O)6]·2H2O
  • M r = 525.02
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m915-efi1.jpg
  • a = 6.8429 (1) Å
  • b = 8.0167 (1) Å
  • c = 16.6700 (2) Å
  • α = 101.620 (1)°
  • β = 92.555 (1)°
  • γ = 93.439 (1)°
  • V = 892.62 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.77 mm−1
  • T = 296 K
  • 0.50 × 0.40 × 0.12 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.300, T max = 0.717
  • 17507 measured reflections
  • 3632 independent reflections
  • 3506 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.083
  • S = 1.04
  • 3632 reflections
  • 279 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Bruker, 2007 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WingGX (Farrugia, 1999 [triangle]), PARST (Nardelli, 1995 [triangle]), enCIFer (Allen et al., 2004 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902666X/jh2083sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902666X/jh2083Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Centro Interdipartimentale della Diffrazione dei Raggi X.

supplementary crystallographic information

Comment

There are many crystallogaraphic studies of 1,2,4,5,-benzenetetracarboxylic ions (btec) coordinated to zinc in the Cambridge Structural Database (Allen, 2002). The previous studies (Robl, 1987; Wei et al., 1991) were followed by others aimed at building stable metal-organic frameworks even exploiting hydrothermal conditions (Wen et al. 2007; Wang et al., 2007; Rochon & Massarweh 2000; Yang et al. 2003; Du et al. 2007). The polymorph presented here is obtained from a simple water solution containing the sodium dicarboxylate, zinc nitrate and melamine. The two metal centers of (I) display a skewed octahedral geometry (Figure 1, Table 1) with water molecules supplementing the organic ligands. Beyond the mono-dimensional scaffold running along the long diagonal of the b and c crystallographic axes (Figure 2), a close hydrogen bonding network supports the crystal packing (Table 2). Similar syntheses with different amines demonstrate that the btec coordination modes and packing strongly depend on the nature of the metal and the ancillary amines used (Bruno & Rotondo, to be published)

Experimental

A water solution of 5 ml of Zn(NO3)2 50mM with an equimolar solution of melamine were aded to 10 ml of a 25mM disodium-dihydrogen 1,2,4,5-benzenetetracarboxylate solution. The resulting clear solution with pH= 5.15 was left covered at room temperature Colourless crystals could be separated from the solution after five days.

Refinement

All hydrogen atoms were located in the difference map and refined in ideal positions with the 'riding and rigid model' technique. Temperature factors are always related to the parent atoms.

Figures

Fig. 1.
View of I. Displacement ellipsoids are drawn at the 40% probability level and dashed atoms are obtained by symmetry transformations. Symmetry codes #: -x, -y + 1, -z + 1; *: -x, -y + 2, -z.
Fig. 2.
Monodimensional framework running along the long diagonal of b and c crystallographic axes. Dashed lines indicate intermolecular hydrogen bonds also reported in the tables.

Crystal data

[Zn2(C10H2O8)(H2O)6]·2H2OZ = 2
Mr = 525.02F(000) = 532
Triclinic, P1Dx = 1.953 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8429 (1) ÅCell parameters from 3632 reflections
b = 8.0167 (1) Åθ = 4.1–26.4°
c = 16.6700 (2) ŵ = 2.77 mm1
α = 101.620 (1)°T = 296 K
β = 92.555 (1)°Laminar, colourless
γ = 93.439 (1)°0.5 × 0.4 × 0.12 mm
V = 892.62 (2) Å3

Data collection

Bruker APEXII diffractometer3506 reflections with I > 2σ(I)
graphiteRint = 0.051
ω scansθmax = 26.4°, θmin = 4.1°
Absorption correction: ψ scan (North et al., 1968)h = −8→8
Tmin = 0.3, Tmax = 0.717k = −10→10
17507 measured reflectionsl = −20→20
3632 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4217P] where P = (Fo2 + 2Fc2)/3
3632 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = −0.72 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.19779 (3)0.58919 (3)0.188584 (13)0.02614 (10)
Zn20.26320 (3)0.96925 (3)0.309777 (13)0.02578 (9)
C10.0467 (3)0.5880 (2)0.43868 (11)0.0224 (3)
C2−0.1459 (3)0.5219 (2)0.44205 (11)0.0221 (3)
C3−0.1898 (3)0.4336 (2)0.50353 (11)0.0236 (3)
H3−0.31730.38840.50590.028*
C40.1070 (3)0.6707 (2)0.36925 (11)0.0235 (3)
C5−0.3060 (3)0.5493 (2)0.38211 (11)0.0250 (4)
O10.1889 (2)0.82096 (17)0.38882 (8)0.0292 (3)
O20.0801 (2)0.58438 (19)0.29902 (8)0.0333 (3)
O3−0.4229 (3)0.4248 (2)0.35058 (12)0.0491 (5)
O4−0.3135 (2)0.69436 (19)0.36674 (10)0.0365 (4)
C60.0639 (3)0.9763 (2)0.07689 (11)0.0238 (3)
C7−0.1212 (3)0.9066 (2)0.04319 (11)0.0240 (4)
C8−0.1827 (3)0.9309 (2)−0.03354 (12)0.0260 (4)
H9−0.30530.8844−0.05650.031*
C90.1354 (3)0.9520 (2)0.15918 (11)0.0244 (4)
C10−0.2624 (3)0.8139 (2)0.08949 (12)0.0249 (4)
O50.2597 (2)1.06218 (18)0.20148 (8)0.0293 (3)
O60.0691 (2)0.82610 (18)0.18669 (9)0.0292 (3)
O7−0.3423 (2)0.90212 (19)0.14747 (9)0.0330 (3)
O8−0.2988 (2)0.65586 (18)0.06365 (9)0.0325 (3)
O1B0.4460 (2)0.77301 (17)0.25175 (8)0.0258 (3)
H1BA0.52010.74590.28870.039*
H1BB0.5190.81010.21830.039*
O1W0.3101 (2)0.5950 (2)0.07794 (9)0.0350 (3)
H1WA0.43470.60280.08110.052*
H1WB0.27240.51350.03820.052*
O2W0.3691 (3)0.39693 (19)0.20722 (11)0.0391 (4)
H2WA0.4290.41520.25430.055 (9)*
H2WB0.32070.29420.19680.062 (10)*
O3W0.0456 (3)1.1285 (2)0.34625 (11)0.0429 (4)
H3WB−0.02811.09290.37990.064*
H3WA−0.02781.15380.30860.064*
O4W0.4683 (3)1.1212 (2)0.38193 (13)0.0457 (4)
H4WA0.49711.21940.37210.069*
H4WB0.57261.08570.40020.069*
O5W−0.0407 (2)0.4428 (2)0.12882 (10)0.0361 (3)
H5WA−0.10.38070.15710.054*
H5WB−0.12240.50860.11440.054*
O6W0.7863 (3)1.0157 (2)0.44733 (9)0.0365 (3)
H6WA0.7931.05010.49910.055*
H6WB0.76830.90750.43730.055*
O7W−0.1929 (3)1.2210 (2)0.22149 (12)0.0436 (4)
H7WA−0.2681.27840.2540.065*
H7WB−0.25681.12850.19810.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03275 (15)0.02292 (14)0.02313 (14)−0.00024 (10)0.00215 (10)0.00610 (9)
Zn20.03256 (15)0.02316 (14)0.02257 (14)−0.00172 (10)0.00053 (10)0.00829 (9)
C10.0280 (9)0.0191 (8)0.0207 (8)−0.0007 (7)0.0026 (7)0.0060 (6)
C20.0258 (8)0.0203 (8)0.0199 (8)0.0002 (6)−0.0015 (6)0.0044 (6)
C30.0240 (8)0.0239 (8)0.0232 (8)−0.0020 (7)0.0009 (7)0.0068 (7)
C40.0243 (8)0.0237 (8)0.0243 (9)0.0005 (7)−0.0001 (7)0.0096 (7)
C50.0268 (9)0.0267 (9)0.0225 (8)0.0007 (7)−0.0013 (7)0.0084 (7)
O10.0401 (8)0.0230 (6)0.0250 (6)−0.0055 (5)0.0033 (6)0.0081 (5)
O20.0456 (8)0.0312 (7)0.0224 (7)−0.0100 (6)0.0034 (6)0.0070 (5)
O30.0503 (10)0.0357 (8)0.0617 (11)−0.0184 (7)−0.0307 (9)0.0244 (8)
O40.0439 (9)0.0244 (7)0.0411 (8)0.0001 (6)−0.0145 (7)0.0105 (6)
C60.0278 (9)0.0233 (8)0.0211 (8)0.0005 (7)0.0009 (7)0.0068 (6)
C70.0263 (9)0.0222 (8)0.0246 (9)−0.0003 (7)0.0036 (7)0.0070 (7)
C80.0257 (9)0.0272 (9)0.0251 (9)−0.0033 (7)0.0004 (7)0.0072 (7)
C90.0262 (9)0.0251 (8)0.0242 (9)0.0049 (7)0.0035 (7)0.0086 (7)
C100.0256 (9)0.0275 (9)0.0230 (9)−0.0017 (7)0.0004 (7)0.0096 (7)
O50.0349 (7)0.0284 (7)0.0246 (6)−0.0025 (6)−0.0049 (6)0.0083 (5)
O60.0315 (7)0.0286 (7)0.0313 (7)0.0028 (5)0.0038 (6)0.0149 (6)
O70.0371 (8)0.0303 (7)0.0322 (7)−0.0014 (6)0.0125 (6)0.0069 (6)
O80.0361 (8)0.0274 (7)0.0326 (7)−0.0079 (6)0.0045 (6)0.0052 (6)
O1B0.0254 (6)0.0278 (7)0.0264 (7)0.0008 (5)0.0028 (5)0.0106 (5)
O1W0.0358 (8)0.0386 (8)0.0274 (7)−0.0063 (6)0.0053 (6)0.0013 (6)
O2W0.0450 (9)0.0261 (7)0.0447 (9)0.0010 (6)−0.0083 (7)0.0071 (6)
O3W0.0494 (10)0.0450 (9)0.0390 (9)0.0158 (8)0.0111 (7)0.0144 (7)
O4W0.0499 (10)0.0279 (8)0.0581 (11)−0.0095 (7)−0.0232 (8)0.0149 (7)
O5W0.0387 (8)0.0319 (8)0.0370 (8)−0.0044 (6)−0.0034 (7)0.0091 (6)
O6W0.0466 (9)0.0305 (7)0.0312 (7)0.0025 (7)−0.0010 (7)0.0045 (6)
O7W0.0473 (10)0.0316 (8)0.0506 (10)−0.0004 (7)0.0074 (8)0.0055 (7)

Geometric parameters (Å, °)

Zn1—O1W2.0374 (15)C6—C91.489 (2)
Zn1—O5W2.0464 (16)C7—C81.383 (3)
Zn1—O22.0484 (14)C7—C101.514 (2)
Zn1—O2W2.0550 (16)C8—C6ii1.390 (3)
Zn1—O62.1462 (14)C8—H90.93
Zn1—O1B2.2540 (14)C9—O61.259 (2)
Zn2—O4W1.9886 (16)C9—O51.268 (2)
Zn2—O12.0065 (13)C10—O71.245 (3)
Zn2—O3W2.0525 (17)C10—O81.259 (2)
Zn2—O52.0868 (13)O1B—H1BA0.85
Zn2—O1B2.1693 (14)O1B—H1BB0.8499
Zn2—O62.4325 (15)O1W—H1WA0.85
Zn2—C92.5955 (19)O1W—H1WB0.8499
C1—C3i1.386 (3)O2W—H2WA0.85
C1—C21.398 (3)O2W—H2WB0.8499
C1—C41.506 (2)O3W—H3WB0.85
C2—C31.391 (3)O3W—H3WA0.8499
C2—C51.506 (2)O4W—H4WA0.85
C3—C1i1.386 (3)O4W—H4WB0.8499
C3—H30.93O5W—H5WA0.85
C4—O21.234 (2)O5W—H5WB0.8499
C4—O11.271 (2)O6W—H6WA0.85
C5—O41.243 (2)O6W—H6WB0.8499
C5—O31.252 (2)O7W—H7WA0.85
C6—C8ii1.390 (3)O7W—H7WB0.8499
C6—C71.399 (3)
O1W—Zn1—O5W89.16 (6)O4—C5—C2117.88 (17)
O1W—Zn1—O2178.96 (7)O3—C5—C2118.09 (17)
O5W—Zn1—O290.13 (6)C4—O1—Zn2125.40 (12)
O1W—Zn1—O2W92.28 (7)C4—O2—Zn1135.19 (13)
O5W—Zn1—O2W98.80 (6)C8ii—C6—C7120.02 (17)
O2—Zn1—O2W88.58 (7)C8ii—C6—C9119.49 (17)
O1W—Zn1—O689.74 (6)C7—C6—C9120.50 (16)
O5W—Zn1—O693.96 (6)C8—C7—C6119.02 (17)
O2—Zn1—O689.55 (6)C8—C7—C10118.37 (17)
O2W—Zn1—O6167.10 (6)C6—C7—C10122.52 (17)
O1W—Zn1—O1B90.00 (5)C7—C8—C6ii120.96 (17)
O5W—Zn1—O1B174.33 (6)C7—C8—H9119.5
O2—Zn1—O1B90.63 (5)C6ii—C8—H9119.5
O2W—Zn1—O1B86.83 (6)O6—C9—O5120.91 (17)
O6—Zn1—O1B80.43 (5)O6—C9—C6120.18 (17)
O4W—Zn2—O197.62 (7)O5—C9—C6118.89 (16)
O4W—Zn2—O3W93.08 (8)O6—C9—Zn268.41 (10)
O1—Zn2—O3W91.65 (7)O5—C9—Zn252.68 (9)
O4W—Zn2—O5103.69 (7)C6—C9—Zn2169.69 (13)
O1—Zn2—O5158.69 (6)O7—C10—O8124.97 (18)
O3W—Zn2—O587.18 (6)O7—C10—C7117.16 (17)
O4W—Zn2—O1B98.94 (7)O8—C10—C7117.73 (17)
O1—Zn2—O1B88.79 (6)C9—O5—Zn298.43 (11)
O3W—Zn2—O1B167.80 (7)C9—O6—Zn1128.94 (12)
O5—Zn2—O1B87.99 (5)C9—O6—Zn282.82 (11)
O4W—Zn2—O6160.35 (7)Zn1—O6—Zn291.75 (5)
O1—Zn2—O6101.22 (5)Zn2—O1B—Zn196.19 (5)
O3W—Zn2—O691.92 (6)Zn2—O1B—H1BA108.5
O5—Zn2—O657.60 (5)Zn1—O1B—H1BA120
O1B—Zn2—O676.05 (5)Zn2—O1B—H1BB110.8
O4W—Zn2—C9132.49 (7)Zn1—O1B—H1BB112.9
O1—Zn2—C9129.83 (6)H1BA—O1B—H1BB107.7
O3W—Zn2—C988.13 (6)Zn1—O1W—H1WA112
O5—Zn2—C928.89 (6)Zn1—O1W—H1WB117.1
O1B—Zn2—C982.25 (5)H1WA—O1W—H1WB107.7
O6—Zn2—C928.77 (5)Zn1—O2W—H2WA114.1
C3i—C1—C2119.98 (17)Zn1—O2W—H2WB119.7
C3i—C1—C4118.49 (16)H2WA—O2W—H2WB107.7
C2—C1—C4121.35 (17)Zn2—O3W—H3WB113
C3—C2—C1118.96 (17)Zn2—O3W—H3WA116.9
C3—C2—C5119.88 (17)H3WB—O3W—H3WA107.7
C1—C2—C5121.13 (16)Zn2—O4W—H4WA118.5
C1i—C3—C2121.06 (17)Zn2—O4W—H4WB123.4
C1i—C3—H3119.5H4WA—O4W—H4WB107.7
C2—C3—H3119.5Zn1—O5W—H5WA114.7
O2—C4—O1125.95 (17)Zn1—O5W—H5WB108.5
O2—C4—C1117.27 (16)H5WA—O5W—H5WB107.7
O1—C4—C1116.71 (16)H6WA—O6W—H6WB107.7
O4—C5—O3124.03 (18)H7WA—O7W—H7WB107.7
C3i—C1—C2—C3−0.5 (3)O3W—Zn2—C9—C650.3 (7)
C4—C1—C2—C3174.41 (16)O5—Zn2—C9—C6−37.3 (7)
C3i—C1—C2—C5177.60 (17)O1B—Zn2—C9—C6−137.2 (7)
C4—C1—C2—C5−7.5 (3)O6—Zn2—C9—C6147.7 (8)
C1—C2—C3—C1i0.5 (3)C8—C7—C10—O7−104.6 (2)
C5—C2—C3—C1i−177.61 (17)C6—C7—C10—O771.8 (2)
C3i—C1—C4—O2117.8 (2)C8—C7—C10—O871.4 (2)
C2—C1—C4—O2−57.2 (3)C6—C7—C10—O8−112.2 (2)
C3i—C1—C4—O1−59.3 (2)O6—C9—O5—Zn2−5.4 (2)
C2—C1—C4—O1125.70 (19)C6—C9—O5—Zn2172.89 (14)
C3—C2—C5—O4134.3 (2)O4W—Zn2—O5—C9176.27 (12)
C1—C2—C5—O4−43.8 (3)O1—Zn2—O5—C9−3.9 (2)
C3—C2—C5—O3−46.0 (3)O3W—Zn2—O5—C9−91.24 (13)
C1—C2—C5—O3135.9 (2)O1B—Zn2—O5—C977.56 (12)
O2—C4—O1—Zn28.8 (3)O6—Zn2—O5—C92.83 (10)
C1—C4—O1—Zn2−174.40 (12)O5—C9—O6—Zn1−81.8 (2)
O4W—Zn2—O1—C4−157.51 (16)C6—C9—O6—Zn199.93 (19)
O3W—Zn2—O1—C4109.16 (16)Zn2—C9—O6—Zn1−86.43 (13)
O5—Zn2—O1—C422.7 (3)O5—C9—O6—Zn24.61 (17)
O1B—Zn2—O1—C4−58.65 (16)C6—C9—O6—Zn2−173.65 (16)
O6—Zn2—O1—C416.87 (16)O1W—Zn1—O6—C9−35.77 (16)
C9—Zn2—O1—C420.22 (19)O5W—Zn1—O6—C9−124.92 (16)
O1—C4—O2—Zn119.5 (3)O2—Zn1—O6—C9144.99 (16)
C1—C4—O2—Zn1−157.33 (15)O2W—Zn1—O6—C963.3 (3)
O5W—Zn1—O2—C4−161.3 (2)O1B—Zn1—O6—C954.27 (16)
O2W—Zn1—O2—C499.9 (2)O1W—Zn1—O6—Zn2−117.95 (5)
O6—Zn1—O2—C4−67.4 (2)O5W—Zn1—O6—Zn2152.91 (6)
O1B—Zn1—O2—C413.1 (2)O2—Zn1—O6—Zn262.81 (5)
C8ii—C6—C7—C80.4 (3)O2W—Zn1—O6—Zn2−18.8 (3)
C9—C6—C7—C8−179.71 (17)O1B—Zn1—O6—Zn2−27.91 (4)
C8ii—C6—C7—C10−176.03 (18)O4W—Zn2—O6—C9−22.1 (2)
C9—C6—C7—C103.9 (3)O1—Zn2—O6—C9174.66 (11)
C6—C7—C8—C6ii−0.4 (3)O3W—Zn2—O6—C982.59 (11)
C10—C7—C8—C6ii176.18 (18)O5—Zn2—O6—C9−2.84 (10)
C8ii—C6—C9—O6−155.20 (18)O1B—Zn2—O6—C9−99.44 (11)
C7—C6—C9—O624.9 (3)O4W—Zn2—O6—Zn1106.93 (19)
C8ii—C6—C9—O526.5 (3)O1—Zn2—O6—Zn1−56.30 (6)
C7—C6—C9—O5−153.42 (18)O3W—Zn2—O6—Zn1−148.36 (6)
C8ii—C6—C9—Zn259.9 (8)O5—Zn2—O6—Zn1126.20 (7)
C7—C6—C9—Zn2−120.0 (7)O1B—Zn2—O6—Zn129.61 (5)
O4W—Zn2—C9—O6170.11 (11)C9—Zn2—O6—Zn1129.05 (12)
O1—Zn2—C9—O6−6.83 (14)O4W—Zn2—O1B—Zn1171.17 (6)
O3W—Zn2—C9—O6−97.42 (11)O1—Zn2—O1B—Zn173.64 (6)
O5—Zn2—C9—O6175.03 (18)O3W—Zn2—O1B—Zn1−18.6 (3)
O1B—Zn2—C9—O675.05 (11)O5—Zn2—O1B—Zn1−85.29 (5)
O4W—Zn2—C9—O5−4.91 (16)O6—Zn2—O1B—Zn1−28.23 (4)
O1—Zn2—C9—O5178.14 (11)C9—Zn2—O1B—Zn1−56.86 (5)
O3W—Zn2—C9—O587.55 (13)O1W—Zn1—O1B—Zn2121.58 (6)
O1B—Zn2—C9—O5−99.97 (12)O2—Zn1—O1B—Zn2−57.59 (6)
O6—Zn2—C9—O5−175.03 (18)O2W—Zn1—O1B—Zn2−146.14 (7)
O4W—Zn2—C9—C6−42.2 (8)O6—Zn1—O1B—Zn231.84 (5)
O1—Zn2—C9—C6140.9 (7)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1B—H1BA···O4iii0.851.822.667 (2)178
O1B—H1BB···O7iii0.851.792.638 (2)175
O1W—H1WA···O8iii0.851.902.721 (2)163
O1W—H1WB···O8iv0.851.972.770 (2)156
O2W—H2WA···O3iii0.851.852.689 (2)171
O2W—H2WB···O5v0.851.902.724 (2)163
O3W—H3WB···O6Wvi0.851.892.737 (2)174
O3W—H3WA···O7W0.851.982.829 (3)178
O4W—H4WA···O3vii0.851.812.661 (2)176
O4W—H4WB···O6W0.851.802.649 (2)175
O5W—H5WA···O7Wv0.851.932.768 (2)170
O5W—H5WB···O80.852.012.855 (2)171
O6W—H6WA···O1viii0.851.942.774 (2)167
O6W—H6WB···O4iii0.851.912.687 (2)152
O7W—H7WA···O3ix0.852.152.995 (3)171
O7W—H7WB···O70.851.892.721 (2)167

Symmetry codes: (iii) x+1, y, z; (iv) −x, −y+1, −z; (v) x, y−1, z; (vi) x−1, y, z; (vii) x+1, y+1, z; (viii) −x+1, −y+2, −z+1; (ix) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2083).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Du, Z.-X., Li, J.-X., Zhang, G.-Y. & Hou, H.-W. (2007). Z. Kristallogr.222, 107–108.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Robl, C. (1987). Z. Anorg. Allg. Chem.554, 79–86.
  • Rochon, F. D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190–198.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, J., Lu, L., Yang, B., Zhao, B.-Z. & Ng, S. W. (2007). Acta Cryst. E63, m2986.
  • Wei, G.-C., Jin, Z.-S., Duan, Z.-B., Yang, K.-Y. & Ni, J.-Z. (1991). Chin. J. Struct. Chem.10, 106–109.
  • Wen, Y.-H., Zhang, Q.-W., He, Y.-H. & Feng, Y.-L. (2007). Inorg. Chem. Commun.10, 543–546.
  • Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m921–m923.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography