PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1978.
Published online 2009 July 25. doi:  10.1107/S1600536809028487
PMCID: PMC2977198

10-Acetyl-10H-phenothia­zine 5-oxide

Abstract

In the title compound, C14H11NO2S, the sulfoxide O atom is disordered over two sites with occupancies of 0.886 (4) and 0.114 (4), reflecting a partial inversion of the lone pair at the tetra­hedral S-atom site. In the crystal, a supra­molecular arrangement arises from weak inter­molecular C—H(...)O hydrogen bonds. π–π contacts between the aromatic rings of symmetry-related mol­ecules [centroid–centroid distances = 3.7547 (15) and 3.9577 (15) Å] in parallel accumulation further stabilize the crystal structure.

Related literature

For synthetic details, see: Gilman & Nelson (1953 [triangle]); Chan et al. (1998 [triangle]). For a general background to phenothia­zine-based mol­ecules, see: Miller et al. (1999 [triangle]); Lam et al. (2001 [triangle]); Wermuth (2003 [triangle]); Wang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1978-scheme1.jpg

Experimental

Crystal data

  • C14H11NO2S
  • M r = 257.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1978-efi1.jpg
  • a = 8.1244 (1) Å
  • b = 14.1787 (2) Å
  • c = 10.7576 (1) Å
  • β = 100.963 (1)°
  • V = 1216.59 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 296 K
  • 0.20 × 0.14 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.950, T max = 0.967
  • 11538 measured reflections
  • 3067 independent reflections
  • 2404 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.127
  • S = 1.09
  • 3067 reflections
  • 174 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028487/bh2235sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028487/bh2235Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of Hean Polytechnic University for Doctor Teachers. The authors thank Ms Q. F. Wang and Dr Z. Z. Zhang for their assistance with the data collection and analysis, respectively.

supplementary crystallographic information

Comment

Phenothiazine is a well known heterocycle. The phenothiazine structure occurs in many synthetic dyes, electroluminescent materials (Miller et al., 1999) and drugs, especially various antipsychotic drugs, e.g. Chlorpromazine and antihistaminic drugs, e.g. Promethazine (Wermuth, 2003). Recently, researchers find some new applications for phenothiazine derivatives in medicine, such as antitubercular (Wang et al., 2008) and antitumor (Lam et al., 2001). As a part of our program devoted to the new applications of phenothiazine derivatives in medicine, we report herein the crystal structure of the title compound, (I).

The molecular structure is shown in fig. 1, with the labeling scheme. The sulfoxide O atom is disordered over two sites (O1A and O1B) with occupancies of 0.88 and 0.12, respectively, corresponding to an inversion of the lone pair at tetrahedral S1 site.

The crystal structure of (I) consists of the self-assembly of the molecules through weak hydrogen bonding interactions of the kind C—H···O. The crystal packing (Fig. 2) consists of a wavy-like arrangement in the ab plane generated by intermolecular interactions of hydrogen bond between the O1A atom of sulfoxide and H atom H5 of the aromatic ring. On the other hand, π–π contacts between the aromatic rings [centroid to centroid distances = 3.7547 (15) and 3.9577 (15) Å ] in parallel accumulation may further stabilize the crystal structure.

Experimental

All reagents were of analytical grade. The title sample was prepared according to a literature method (Gilman & Nelson, 1953; Chan et al., 1998) from the N-benzylphenothiazine. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared spectra and elemental analyses. Single crystals of the title compound were obtained by slow evaporation of an ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement

H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 and 0.96Å for benzene and methyl H atoms, respectively) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2 or 1.5 Ueq(C). The sulfoxide O atom is disordered over two positions with partial site-occupancies of 0.88 and 0.12, respectively, which were fixed in the last least-squares cycles.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines, viewed down the a axis.

Crystal data

C14H11NO2SF(000) = 536
Mr = 257.30Dx = 1.405 Mg m3
Monoclinic, P21/nMelting point: 443 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.1244 (1) ÅCell parameters from 4917 reflections
b = 14.1787 (2) Åθ = 2.4–27.7°
c = 10.7576 (1) ŵ = 0.26 mm1
β = 100.963 (1)°T = 296 K
V = 1216.59 (3) Å3Block, orange
Z = 40.20 × 0.14 × 0.13 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3067 independent reflections
Radiation source: fine-focus sealed tube2404 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −10→10
Tmin = 0.950, Tmax = 0.967k = −18→18
11538 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5122P] where P = (Fo2 + 2Fc2)/3
3067 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = −0.24 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.2768 (2)1.03984 (14)0.34599 (17)0.0419 (4)
C20.4325 (3)1.08344 (17)0.3653 (2)0.0552 (6)
H2A0.44401.14610.39110.066*
C30.5687 (3)1.0329 (2)0.3456 (2)0.0679 (7)
H3A0.67361.06140.35850.081*
C40.5520 (3)0.9400 (2)0.3069 (2)0.0603 (6)
H4A0.64610.90590.29600.072*
C50.3958 (2)0.89724 (16)0.28427 (19)0.0482 (5)
H5A0.38450.83530.25540.058*
C60.2563 (2)0.94696 (13)0.30478 (16)0.0372 (4)
C7−0.0305 (2)0.97033 (13)0.19798 (17)0.0383 (4)
C8−0.0329 (2)1.06443 (13)0.23222 (18)0.0415 (4)
C9−0.1414 (3)1.12817 (16)0.1596 (2)0.0552 (5)
H9A−0.14141.19140.18240.066*
C10−0.2486 (3)1.09580 (18)0.0533 (2)0.0600 (6)
H10A−0.32191.13750.00400.072*
C11−0.2480 (3)1.00256 (18)0.0197 (2)0.0580 (6)
H11A−0.32230.9815−0.05150.070*
C12−0.1381 (2)0.93909 (15)0.09038 (19)0.0467 (5)
H12A−0.13690.87630.06570.056*
C130.0405 (3)0.82363 (14)0.3156 (2)0.0479 (5)
C140.1638 (3)0.76880 (16)0.4099 (2)0.0602 (6)
H14A0.10480.73210.46220.090*
H14B0.23860.81160.46190.090*
H14C0.22710.72760.36590.090*
N10.09014 (18)0.90973 (10)0.27386 (15)0.0388 (3)
O2−0.1007 (2)0.79521 (12)0.2791 (2)0.0756 (6)
S10.09806 (7)1.10145 (4)0.37655 (5)0.05019 (17)
O1A0.1306 (3)1.20324 (11)0.37154 (19)0.0716 (7)0.886 (4)
O1B0.0214 (17)1.0640 (10)0.4755 (10)0.068 (5)0.114 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0440 (10)0.0426 (10)0.0387 (9)−0.0069 (8)0.0070 (7)0.0010 (8)
C20.0588 (13)0.0576 (13)0.0471 (11)−0.0228 (11)0.0047 (9)0.0040 (9)
C30.0425 (11)0.100 (2)0.0595 (14)−0.0217 (13)0.0069 (10)0.0140 (14)
C40.0384 (10)0.0930 (19)0.0505 (12)0.0062 (11)0.0108 (9)0.0122 (12)
C50.0444 (10)0.0558 (12)0.0440 (10)0.0094 (9)0.0074 (8)0.0036 (9)
C60.0354 (9)0.0394 (10)0.0362 (9)−0.0009 (7)0.0050 (7)0.0030 (7)
C70.0326 (8)0.0359 (9)0.0469 (10)0.0023 (7)0.0090 (7)0.0043 (7)
C80.0413 (10)0.0369 (9)0.0491 (10)0.0044 (8)0.0153 (8)0.0038 (8)
C90.0607 (13)0.0416 (11)0.0674 (14)0.0151 (10)0.0230 (11)0.0118 (10)
C100.0512 (12)0.0671 (15)0.0618 (13)0.0193 (11)0.0109 (10)0.0222 (11)
C110.0445 (11)0.0760 (16)0.0510 (12)0.0027 (11)0.0028 (9)0.0102 (11)
C120.0416 (10)0.0466 (11)0.0512 (11)−0.0019 (9)0.0072 (8)0.0018 (9)
C130.0452 (11)0.0334 (10)0.0637 (13)0.0001 (8)0.0065 (9)0.0048 (9)
C140.0633 (14)0.0438 (12)0.0713 (14)0.0045 (10)0.0071 (11)0.0160 (10)
N10.0348 (7)0.0305 (7)0.0496 (9)0.0005 (6)0.0040 (6)0.0027 (6)
O20.0546 (10)0.0521 (10)0.1130 (15)−0.0162 (8)−0.0019 (9)0.0240 (9)
S10.0644 (3)0.0362 (3)0.0524 (3)−0.0005 (2)0.0175 (2)−0.0066 (2)
O1A0.1022 (16)0.0319 (9)0.0786 (14)−0.0026 (9)0.0119 (11)−0.0088 (8)
O1B0.084 (11)0.080 (11)0.045 (8)0.017 (8)0.020 (7)−0.003 (7)

Geometric parameters (Å, °)

C1—C21.387 (3)C8—S11.786 (2)
C1—C61.389 (3)C9—C101.377 (3)
C1—S11.778 (2)C9—H9A0.9300
C2—C31.369 (4)C10—C111.371 (3)
C2—H2A0.9300C10—H10A0.9300
C3—C41.380 (4)C11—C121.388 (3)
C3—H3A0.9300C11—H11A0.9300
C4—C51.385 (3)C12—H12A0.9300
C4—H4A0.9300C13—O21.209 (2)
C5—C61.388 (3)C13—N11.387 (2)
C5—H5A0.9300C13—C141.500 (3)
C6—N11.428 (2)C14—H14A0.9600
C7—C121.384 (3)C14—H14B0.9600
C7—C81.385 (3)C14—H14C0.9600
C7—N11.436 (2)S1—O1B1.433 (5)
C8—C91.394 (3)S1—O1A1.4700 (17)
C2—C1—C6121.40 (19)C11—C10—C9120.4 (2)
C2—C1—S1120.45 (17)C11—C10—H10A119.8
C6—C1—S1118.14 (14)C9—C10—H10A119.8
C3—C2—C1119.0 (2)C10—C11—C12121.0 (2)
C3—C2—H2A120.5C10—C11—H11A119.5
C1—C2—H2A120.5C12—C11—H11A119.5
C2—C3—C4120.7 (2)C7—C12—C11119.3 (2)
C2—C3—H3A119.6C7—C12—H12A120.4
C4—C3—H3A119.6C11—C12—H12A120.4
C3—C4—C5120.3 (2)O2—C13—N1120.32 (18)
C3—C4—H4A119.9O2—C13—C14121.16 (19)
C5—C4—H4A119.9N1—C13—C14118.48 (18)
C4—C5—C6119.9 (2)C13—C14—H14A109.5
C4—C5—H5A120.0C13—C14—H14B109.5
C6—C5—H5A120.0H14A—C14—H14B109.5
C5—C6—C1118.67 (17)C13—C14—H14C109.5
C5—C6—N1122.65 (17)H14A—C14—H14C109.5
C1—C6—N1118.40 (16)H14B—C14—H14C109.5
C12—C7—C8119.46 (17)C13—N1—C6124.75 (15)
C12—C7—N1122.58 (17)C13—N1—C7120.12 (15)
C8—C7—N1117.90 (16)C6—N1—C7115.08 (14)
C7—C8—C9121.0 (2)O1B—S1—O1A119.8 (6)
C7—C8—S1118.55 (14)O1B—S1—C1116.2 (6)
C9—C8—S1120.37 (16)O1A—S1—C1108.47 (11)
C10—C9—C8118.8 (2)O1B—S1—C8105.4 (6)
C10—C9—H9A120.6O1A—S1—C8109.77 (10)
C8—C9—H9A120.6C1—S1—C893.87 (9)
C6—C1—C2—C3−1.4 (3)C14—C13—N1—C66.2 (3)
S1—C1—C2—C3177.45 (17)O2—C13—N1—C76.8 (3)
C1—C2—C3—C40.2 (3)C14—C13—N1—C7−171.17 (19)
C2—C3—C4—C51.7 (3)C5—C6—N1—C1354.0 (3)
C3—C4—C5—C6−2.3 (3)C1—C6—N1—C13−132.1 (2)
C4—C5—C6—C11.1 (3)C5—C6—N1—C7−128.52 (19)
C4—C5—C6—N1174.92 (18)C1—C6—N1—C745.4 (2)
C2—C1—C6—C50.8 (3)C12—C7—N1—C13−51.1 (3)
S1—C1—C6—C5−178.09 (14)C8—C7—N1—C13131.6 (2)
C2—C1—C6—N1−173.37 (17)C12—C7—N1—C6131.29 (19)
S1—C1—C6—N17.8 (2)C8—C7—N1—C6−46.0 (2)
C12—C7—C8—C9−0.4 (3)C2—C1—S1—O1B−116.3 (7)
N1—C7—C8—C9177.03 (17)C6—C1—S1—O1B62.6 (7)
C12—C7—C8—S1176.25 (15)C2—C1—S1—O1A22.1 (2)
N1—C7—C8—S1−6.3 (2)C6—C1—S1—O1A−159.03 (15)
C7—C8—C9—C100.9 (3)C2—C1—S1—C8134.44 (17)
S1—C8—C9—C10−175.71 (16)C6—C1—S1—C8−46.70 (16)
C8—C9—C10—C11−0.2 (3)C7—C8—S1—O1B−72.4 (6)
C9—C10—C11—C12−1.0 (3)C9—C8—S1—O1B104.2 (6)
C8—C7—C12—C11−0.8 (3)C7—C8—S1—O1A157.27 (16)
N1—C7—C12—C11−178.08 (18)C9—C8—S1—O1A−26.1 (2)
C10—C11—C12—C71.5 (3)C7—C8—S1—C146.07 (16)
O2—C13—N1—C6−175.9 (2)C9—C8—S1—C1−137.28 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···O1Ai0.932.313.207 (3)163

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2235).

References

  • Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chan, C., Yin, H., Garforth, J., McKie, J. H., Jaouhari, R., Speers, P., Douglas, K. T., Rock, P. J., Yardley, V., Croft, S. L. & Fairlamb, A. H. (1998). J. Med. Chem.41, 148–156. [PubMed]
  • Gilman, H. & Nelson, R. D. (1953). J. Am. Chem. Soc.75, 5422–5425.
  • Lam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem.276, 47379–47386. [PubMed]
  • Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc.121, 4292–4293.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn.12, 381–382.
  • Wermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2nd ed. London: Acdemic Press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography