PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m1001.
Published online 2009 July 29. doi:  10.1107/S1600536809029559
PMCID: PMC2977191

Aqua­bis(triphenyl­phosphine-κP)copper(I) tetra­fluoridoborate

Abstract

In the title compound, [Cu(C18H15P)2(H2O)]BF4, the CuI atom is coordinated by two P atoms from triphenyl­phosphine ligands and one water mol­ecule in a distorted trigonal geometry. In the BF4 anion, three F atoms are disordered over two sites around the B—F bond, the site-occupancy ratio being 0.67 (6):0.33 (6). The Cu(...)F distance of 2.602 (5) Å between the Cu atom and the ordered F atom may suggest a weak but genuine inter­action. O—H(...)F and weak C—H(...)F hydrogen bonding is present in the crystal structure.

Related literature

For the applications of CuI complexes, see: Kirchhoff et al. (1985 [triangle]); Zhang et al. (2004 [triangle]); Moudam et al. (2007 [triangle]). For the tetra­hedral coordination geometry of CuI complexes, see: Engelhardt et al. (1985 [triangle]); Barron et al. (1987 [triangle]). For the weak Cu(...)F inter­action, see: Mao et al. (2003 [triangle]); Fu et al. (2004 [triangle]). For Cu—P and Cu—O bond distances, see: Meng et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1001-scheme1.jpg

Experimental

Crystal data

  • [Cu(C18H15P)2(H2O)]BF4
  • M r = 692.91
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1001-efi1.jpg
  • a = 13.9737 (14) Å
  • b = 12.4258 (11) Å
  • c = 19.4276 (18) Å
  • β = 94.521 (1)°
  • V = 3362.8 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 298 K
  • 0.48 × 0.19 × 0.16 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.702, T max = 0.883
  • 17192 measured reflections
  • 5914 independent reflections
  • 3008 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.202
  • S = 1.04
  • 5914 reflections
  • 434 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.93 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029559/xu2555sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029559/xu2555Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Copper(I) complexes with phosphine ligand have attracted much attention because of their rich photophysical properties and potential applications in organic light-emitting diodes (OLEDs) (Kirchhoff et al., 1985; Zhang et al., 2004; Moudam et al., 2007). These complexes usually adopt tetrahedron coordination geometry (Engelhardt et al., 1985; Barron et al., 1987), three-coordinated copper(I) complexes with phosphine ligands is relatively little known. We reported here the title three-coordinated copper(I) complex.

The molecular structure is depicted in Fig. 1. The copper(I) atom is three-coordinated in distorted trigonal geometry (Table 1) by two P atoms from two triphenylphosphine ligands and one water molecule. The Cu1—P and Cu1—O bond distances are comparable to those found in related complexes (Engelhardt et al., 1985; Barron et al., 1987; Meng et al., 2006). The coordination angles around the Cu1 atom are ranging from 104.80 (16)° to 133.89 (7)°. In the BF4 anion three F atoms are disordered over two sites around the B1—F1 bond. The Cu1···F1 distance of 2.602 (5) Å between the Cu1 atom and the ordered F1 atom may suggests a weak but genuine interaction, similar to the situation found in the related structures (Fu et al., 2004); Mao et al., 2003).

The O—H···F and weak C—H···F hydrogen bonding is present in the crystal structure (Table 2).

Experimental

[Cu(CH3CN)4]BF4 (0.031 g, 0.1 mmol) was added to a solution of triphenylphosphine (0.052 g, 0.2 mmol) in 30 ml dichloromethane with small amount of water under nitrogen atmosphere. The mixture was stirred at room temperature for 2 h to obtain the yellow solution. Crystallization by slow diffusion of diethyl ether into the dichloromethane solution yielded yellow crystals suitable for X-ray diffraction (yield: 47%). Analysis calculated for [Cu(H2O)(C18H15P)2].(BF4): C 62.40, H 4.66%; Found: C 62.08, H 4.93%.

Refinement

All H atoms were positioned geometrically and treated as riding (O—H = 0.65 Å and C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,O). The F2, F3 and F4 atoms are disordered over two sites, site occupancy factors were refined to 0.67 (6) and 0.33 (6).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The H atoms in benzene rings and the minor disorder component of the F2—F4 are omitted for clarity. The Cu···F ...

Crystal data

[Cu(C18H15P)2(H2O)]BF4F(000) = 1424
Mr = 692.91Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2641 reflections
a = 13.9737 (14) Åθ = 2.2–21.6°
b = 12.4258 (11) ŵ = 0.79 mm1
c = 19.4276 (18) ÅT = 298 K
β = 94.521 (1)°Block, yellow
V = 3362.8 (5) Å30.48 × 0.19 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer5914 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
graphiteRint = 0.078
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→15
Tmin = 0.702, Tmax = 0.883k = −14→14
17192 measured reflectionsl = −23→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0646P)2 + 7.3064P] where P = (Fo2 + 2Fc2)/3
5914 reflections(Δ/σ)max = 0.001
434 parametersΔρmax = 0.93 e Å3
1 restraintΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.36105 (6)0.80395 (7)0.13634 (4)0.0517 (3)
O10.2503 (4)0.7985 (4)0.2037 (2)0.0875 (17)
H1C0.23440.86340.21070.105*
H1D0.23140.75970.23610.105*
P10.50924 (12)0.81613 (14)0.18770 (8)0.0460 (4)
P20.29834 (12)0.72605 (14)0.03854 (8)0.0464 (4)
C10.6043 (4)0.8457 (5)0.1314 (3)0.0463 (15)
C20.5854 (5)0.9201 (6)0.0780 (3)0.0606 (19)
H20.52470.95100.07150.073*
C30.6543 (6)0.9483 (6)0.0352 (4)0.069 (2)
H30.63990.9972−0.00030.082*
C40.7436 (6)0.9051 (6)0.0442 (4)0.067 (2)
H40.79020.92420.01490.081*
C50.7649 (5)0.8330 (6)0.0971 (4)0.068 (2)
H50.82650.80440.10380.082*
C60.6956 (5)0.8025 (6)0.1404 (3)0.0583 (18)
H60.71050.75300.17560.070*
C70.5344 (5)0.9112 (5)0.2578 (3)0.0512 (17)
C80.6274 (5)0.9386 (6)0.2829 (3)0.0610 (19)
H80.67930.90410.26520.073*
C90.6440 (6)1.0154 (6)0.3332 (4)0.070 (2)
H90.70661.03370.34870.084*
C100.5692 (7)1.0643 (7)0.3602 (4)0.077 (2)
H100.58071.11510.39500.092*
C110.4772 (6)1.0403 (7)0.3370 (4)0.083 (3)
H110.42621.07530.35540.100*
C120.4599 (5)0.9630 (6)0.2857 (3)0.067 (2)
H120.39700.94620.27020.080*
C130.5397 (5)0.6851 (5)0.2224 (3)0.0527 (17)
C140.5584 (6)0.6645 (6)0.2916 (4)0.077 (2)
H140.55890.72060.32340.092*
C150.5764 (7)0.5595 (8)0.3144 (5)0.105 (3)
H150.58800.54590.36140.126*
C160.5774 (8)0.4772 (8)0.2688 (5)0.106 (3)
H160.59100.40780.28450.127*
C170.5585 (7)0.4957 (7)0.2005 (5)0.094 (3)
H170.55860.43920.16910.113*
C180.5394 (6)0.5986 (6)0.1781 (4)0.075 (2)
H180.52570.61050.13110.090*
C190.3094 (4)0.5817 (5)0.0445 (3)0.0479 (16)
C200.2846 (5)0.5319 (6)0.1046 (4)0.067 (2)
H200.27100.57380.14220.080*
C210.2797 (6)0.4224 (7)0.1093 (4)0.077 (2)
H210.26160.39080.14960.092*
C220.3010 (6)0.3593 (7)0.0560 (4)0.077 (2)
H220.29610.28490.05930.092*
C230.3296 (6)0.4054 (7)−0.0029 (4)0.081 (2)
H230.34670.3624−0.03920.097*
C240.3332 (5)0.5159 (6)−0.0084 (4)0.066 (2)
H240.35210.5466−0.04880.080*
C250.1693 (5)0.7425 (6)0.0208 (3)0.0487 (16)
C260.1270 (5)0.8370 (6)0.0406 (4)0.070 (2)
H260.16380.88910.06450.084*
C270.0280 (6)0.8544 (8)0.0245 (4)0.083 (3)
H27−0.00070.91770.03800.099*
C28−0.0256 (6)0.7771 (8)−0.0113 (4)0.079 (2)
H28−0.09040.7894−0.02350.095*
C290.0150 (5)0.6832 (7)−0.0291 (4)0.073 (2)
H29−0.02230.6302−0.05200.088*
C300.1115 (5)0.6663 (6)−0.0133 (3)0.0610 (19)
H300.13860.6016−0.02590.073*
C310.3468 (5)0.7605 (5)−0.0425 (3)0.0512 (17)
C320.4439 (5)0.7700 (6)−0.0454 (4)0.065 (2)
H320.48400.7570−0.00570.078*
C330.4846 (6)0.7984 (6)−0.1059 (4)0.074 (2)
H330.55090.8030−0.10690.089*
C340.4255 (6)0.8195 (7)−0.1639 (4)0.076 (2)
H340.45190.8389−0.20460.091*
C350.3292 (6)0.8125 (7)−0.1625 (4)0.080 (2)
H350.28960.8278−0.20210.096*
C360.2894 (5)0.7826 (6)−0.1026 (3)0.067 (2)
H360.22310.7771−0.10230.080*
B10.2480 (10)1.0703 (10)0.1638 (6)0.086 (3)
F10.3118 (4)1.0059 (4)0.1338 (2)0.0998 (15)
F20.206 (2)1.010 (2)0.2129 (18)0.108 (7)0.67 (6)
F30.3076 (17)1.150 (2)0.1979 (18)0.134 (9)0.67 (6)
F40.188 (2)1.115 (3)0.1190 (10)0.134 (10)0.67 (6)
F2'0.258 (5)1.174 (2)0.162 (3)0.138 (17)0.33 (6)
F3'0.155 (3)1.054 (5)0.123 (3)0.125 (15)0.33 (6)
F4'0.232 (5)1.050 (6)0.228 (2)0.110 (15)0.33 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0530 (5)0.0605 (6)0.0401 (5)0.0008 (4)−0.0054 (3)−0.0045 (4)
O10.121 (4)0.076 (4)0.069 (3)−0.003 (3)0.034 (3)0.015 (3)
P10.0515 (10)0.0508 (11)0.0342 (9)0.0055 (9)−0.0063 (7)−0.0053 (8)
P20.0489 (10)0.0510 (11)0.0378 (9)0.0044 (8)−0.0063 (7)−0.0019 (8)
C10.053 (4)0.044 (4)0.040 (4)−0.001 (3)−0.005 (3)−0.009 (3)
C20.068 (5)0.055 (5)0.058 (4)0.013 (4)−0.003 (4)0.000 (4)
C30.085 (6)0.058 (5)0.062 (5)−0.002 (5)0.004 (4)0.008 (4)
C40.082 (6)0.059 (5)0.063 (5)−0.002 (4)0.016 (4)−0.004 (4)
C50.062 (5)0.075 (6)0.069 (5)0.012 (4)0.009 (4)−0.012 (4)
C60.066 (5)0.059 (5)0.050 (4)0.010 (4)0.000 (4)0.003 (3)
C70.063 (4)0.052 (4)0.037 (4)0.004 (4)−0.005 (3)−0.007 (3)
C80.067 (5)0.067 (5)0.048 (4)0.001 (4)−0.008 (3)−0.011 (4)
C90.080 (5)0.072 (6)0.056 (5)−0.007 (5)−0.010 (4)−0.012 (4)
C100.110 (7)0.069 (6)0.050 (5)−0.006 (5)0.002 (5)−0.019 (4)
C110.089 (6)0.089 (7)0.074 (6)0.004 (5)0.022 (5)−0.032 (5)
C120.070 (5)0.075 (5)0.055 (4)0.002 (4)0.002 (4)−0.020 (4)
C130.059 (4)0.055 (5)0.042 (4)−0.001 (4)−0.006 (3)−0.002 (3)
C140.108 (6)0.060 (5)0.058 (5)−0.002 (5)−0.016 (4)0.003 (4)
C150.161 (10)0.080 (7)0.068 (6)0.000 (7)−0.028 (6)0.024 (5)
C160.153 (9)0.062 (6)0.097 (8)0.014 (6)−0.023 (7)0.016 (6)
C170.136 (8)0.060 (6)0.085 (7)0.013 (6)−0.007 (6)−0.004 (5)
C180.105 (6)0.059 (5)0.059 (5)0.016 (5)−0.004 (4)0.002 (4)
C190.050 (4)0.053 (4)0.040 (4)0.006 (3)−0.001 (3)0.000 (3)
C200.088 (6)0.057 (5)0.057 (5)0.009 (4)0.014 (4)0.000 (4)
C210.099 (6)0.064 (6)0.069 (5)0.007 (5)0.016 (5)0.011 (4)
C220.096 (6)0.054 (5)0.080 (6)0.010 (5)0.002 (5)0.004 (5)
C230.107 (7)0.062 (6)0.073 (6)0.014 (5)0.013 (5)−0.010 (4)
C240.084 (5)0.060 (5)0.056 (5)0.011 (4)0.009 (4)0.001 (4)
C250.052 (4)0.054 (4)0.040 (4)0.013 (3)0.002 (3)0.004 (3)
C260.070 (5)0.066 (5)0.072 (5)0.013 (4)−0.001 (4)0.000 (4)
C270.077 (6)0.082 (6)0.091 (6)0.035 (5)0.014 (5)0.012 (5)
C280.060 (5)0.106 (8)0.071 (6)0.017 (5)−0.004 (4)0.009 (5)
C290.052 (4)0.102 (7)0.063 (5)0.002 (5)−0.007 (4)−0.007 (5)
C300.054 (4)0.074 (5)0.053 (4)0.009 (4)−0.006 (3)−0.007 (4)
C310.057 (4)0.054 (4)0.042 (4)0.000 (3)−0.002 (3)0.002 (3)
C320.063 (5)0.075 (5)0.056 (5)0.003 (4)0.002 (4)0.009 (4)
C330.067 (5)0.081 (6)0.075 (5)0.004 (4)0.019 (4)0.013 (5)
C340.091 (6)0.081 (6)0.058 (5)−0.002 (5)0.018 (5)0.008 (4)
C350.088 (6)0.099 (7)0.051 (5)−0.011 (5)−0.005 (4)0.018 (4)
C360.063 (5)0.086 (6)0.050 (4)−0.009 (4)−0.001 (4)0.012 (4)
B10.123 (10)0.058 (8)0.075 (8)0.007 (8)0.003 (8)0.002 (6)
F10.111 (4)0.107 (4)0.085 (3)0.013 (3)0.026 (3)0.007 (3)
F20.131 (14)0.094 (13)0.108 (16)0.015 (9)0.058 (12)0.023 (9)
F30.134 (12)0.113 (11)0.151 (18)−0.001 (10)−0.009 (11)−0.046 (11)
F40.139 (14)0.14 (2)0.119 (9)0.048 (15)−0.014 (9)0.047 (13)
F2'0.18 (4)0.097 (19)0.14 (3)−0.014 (19)−0.01 (3)0.015 (17)
F3'0.14 (2)0.10 (3)0.13 (2)0.02 (2)−0.016 (18)−0.024 (19)
F4'0.15 (3)0.12 (4)0.060 (15)0.02 (3)0.013 (16)0.013 (18)

Geometric parameters (Å, °)

Cu1—O12.105 (5)C17—H170.9300
Cu1—P12.2318 (18)C18—H180.9300
Cu1—P22.2478 (18)C19—C241.375 (9)
O1—H1C0.8500C19—C201.389 (9)
O1—H1D0.8500C20—C211.366 (10)
P1—C131.800 (7)C20—H200.9300
P1—C71.816 (6)C21—C221.349 (10)
P1—C11.823 (6)C21—H210.9300
P2—C191.803 (7)C22—C231.368 (10)
P2—C311.814 (6)C22—H220.9300
P2—C251.820 (6)C23—C241.377 (10)
C1—C61.383 (8)C23—H230.9300
C1—C21.400 (9)C24—H240.9300
C2—C31.366 (9)C25—C301.380 (9)
C2—H20.9300C25—C261.382 (9)
C3—C41.357 (10)C26—C271.410 (10)
C3—H30.9300C26—H260.9300
C4—C51.378 (10)C27—C281.373 (11)
C4—H40.9300C27—H270.9300
C5—C61.385 (9)C28—C291.355 (11)
C5—H50.9300C28—H280.9300
C6—H60.9300C29—C301.375 (9)
C7—C121.373 (9)C29—H290.9300
C7—C81.394 (9)C30—H300.9300
C8—C91.374 (9)C31—C321.367 (9)
C8—H80.9300C31—C361.390 (9)
C9—C101.350 (10)C32—C331.391 (9)
C9—H90.9300C32—H320.9300
C10—C111.362 (10)C33—C341.369 (10)
C10—H100.9300C33—H330.9300
C11—C121.391 (10)C34—C351.351 (10)
C11—H110.9300C34—H340.9300
C12—H120.9300C35—C361.381 (9)
C13—C141.374 (9)C35—H350.9300
C13—C181.377 (9)C36—H360.9300
C14—C151.393 (11)B1—F41.285 (19)
C14—H140.9300B1—F2'1.30 (3)
C15—C161.354 (12)B1—F4'1.31 (5)
C15—H150.9300B1—F11.363 (12)
C16—C171.352 (11)B1—F21.38 (3)
C16—H160.9300B1—F31.42 (2)
C17—C181.370 (10)B1—F3'1.48 (4)
O1—Cu1—P1115.18 (16)C17—C18—C13122.6 (7)
O1—Cu1—P2104.80 (16)C17—C18—H18118.7
P1—Cu1—P2133.89 (7)C13—C18—H18118.7
Cu1—O1—H1C106.5C24—C19—C20117.0 (7)
Cu1—O1—H1D139.8C24—C19—P2124.6 (5)
H1C—O1—H1D108.6C20—C19—P2118.1 (5)
C13—P1—C7106.4 (3)C21—C20—C19121.1 (7)
C13—P1—C1104.2 (3)C21—C20—H20119.4
C7—P1—C1102.2 (3)C19—C20—H20119.4
C13—P1—Cu1106.8 (2)C22—C21—C20120.8 (8)
C7—P1—Cu1119.8 (2)C22—C21—H21119.6
C1—P1—Cu1116.1 (2)C20—C21—H21119.6
C19—P2—C31104.8 (3)C21—C22—C23119.7 (8)
C19—P2—C25101.7 (3)C21—C22—H22120.2
C31—P2—C25103.9 (3)C23—C22—H22120.2
C19—P2—Cu1110.4 (2)C22—C23—C24119.8 (8)
C31—P2—Cu1119.0 (2)C22—C23—H23120.1
C25—P2—Cu1115.2 (2)C24—C23—H23120.1
C6—C1—C2118.0 (6)C19—C24—C23121.5 (7)
C6—C1—P1123.7 (5)C19—C24—H24119.2
C2—C1—P1118.3 (5)C23—C24—H24119.2
C3—C2—C1121.3 (7)C30—C25—C26118.0 (6)
C3—C2—H2119.4C30—C25—P2123.2 (5)
C1—C2—H2119.4C26—C25—P2118.8 (6)
C4—C3—C2120.3 (7)C25—C26—C27120.2 (8)
C4—C3—H3119.8C25—C26—H26119.9
C2—C3—H3119.8C27—C26—H26119.9
C3—C4—C5119.8 (7)C28—C27—C26119.4 (8)
C3—C4—H4120.1C28—C27—H27120.3
C5—C4—H4120.1C26—C27—H27120.3
C4—C5—C6120.7 (7)C29—C28—C27120.6 (8)
C4—C5—H5119.7C29—C28—H28119.7
C6—C5—H5119.7C27—C28—H28119.7
C1—C6—C5119.9 (6)C28—C29—C30119.8 (8)
C1—C6—H6120.0C28—C29—H29120.1
C5—C6—H6120.0C30—C29—H29120.1
C12—C7—C8117.6 (6)C29—C30—C25121.9 (7)
C12—C7—P1119.6 (5)C29—C30—H30119.0
C8—C7—P1122.8 (5)C25—C30—H30119.0
C9—C8—C7121.3 (7)C32—C31—C36117.2 (6)
C9—C8—H8119.4C32—C31—P2119.7 (5)
C7—C8—H8119.4C36—C31—P2123.0 (5)
C10—C9—C8119.8 (7)C31—C32—C33122.0 (7)
C10—C9—H9120.1C31—C32—H32119.0
C8—C9—H9120.1C33—C32—H32119.0
C9—C10—C11120.9 (7)C34—C33—C32118.9 (7)
C9—C10—H10119.6C34—C33—H33120.5
C11—C10—H10119.6C32—C33—H33120.5
C10—C11—C12119.6 (7)C35—C34—C33120.6 (7)
C10—C11—H11120.2C35—C34—H34119.7
C12—C11—H11120.2C33—C34—H34119.7
C7—C12—C11120.8 (7)C34—C35—C36120.1 (7)
C7—C12—H12119.6C34—C35—H35120.0
C11—C12—H12119.6C36—C35—H35120.0
C14—C13—C18117.2 (7)C35—C36—C31121.2 (7)
C14—C13—P1123.8 (6)C35—C36—H36119.4
C18—C13—P1118.9 (5)C31—C36—H36119.4
C13—C14—C15120.0 (8)F4—B1—F1112.3 (13)
C13—C14—H14120.0F4—B1—F2114.1 (18)
C15—C14—H14120.0F1—B1—F2107.7 (14)
C16—C15—C14120.7 (8)F4—B1—F3110.3 (14)
C16—C15—H15119.6F1—B1—F3103.1 (12)
C14—C15—H15119.6F2—B1—F3108.8 (13)
C17—C16—C15120.2 (9)F2'—B1—F4'104 (3)
C17—C16—H16119.9F2'—B1—F3'103 (2)
C15—C16—H16119.9F4'—B1—F3'106 (3)
C16—C17—C18119.2 (8)F1—B1—F3'105.6 (16)
C16—C17—H17120.4F2'—B1—F1120 (2)
C18—C17—H17120.4F4'—B1—F1117 (3)
O1—Cu1—P1—C1375.2 (3)C13—C14—C15—C161.1 (15)
P2—Cu1—P1—C13−72.4 (2)C14—C15—C16—C17−1.5 (17)
O1—Cu1—P1—C7−45.7 (3)C15—C16—C17—C180.6 (17)
P2—Cu1—P1—C7166.8 (2)C16—C17—C18—C130.8 (15)
O1—Cu1—P1—C1−169.2 (3)C14—C13—C18—C17−1.3 (12)
P2—Cu1—P1—C143.3 (3)P1—C13—C18—C17−177.8 (7)
O1—Cu1—P2—C19−83.8 (3)C31—P2—C19—C24−10.6 (7)
P1—Cu1—P2—C1966.0 (2)C25—P2—C19—C2497.4 (6)
O1—Cu1—P2—C31155.1 (3)Cu1—P2—C19—C24−139.8 (5)
P1—Cu1—P2—C31−55.1 (3)C31—P2—C19—C20175.1 (5)
O1—Cu1—P2—C2530.6 (3)C25—P2—C19—C20−76.9 (6)
P1—Cu1—P2—C25−179.5 (2)Cu1—P2—C19—C2045.8 (6)
C13—P1—C1—C6−26.4 (6)C24—C19—C20—C21−3.0 (11)
C7—P1—C1—C684.2 (6)P2—C19—C20—C21171.7 (6)
Cu1—P1—C1—C6−143.5 (5)C19—C20—C21—C221.4 (13)
C13—P1—C1—C2156.7 (5)C20—C21—C22—C231.4 (13)
C7—P1—C1—C2−92.7 (5)C21—C22—C23—C24−2.4 (13)
Cu1—P1—C1—C239.6 (6)C20—C19—C24—C232.0 (11)
C6—C1—C2—C31.0 (10)P2—C19—C24—C23−172.4 (6)
P1—C1—C2—C3178.1 (6)C22—C23—C24—C190.7 (12)
C1—C2—C3—C4−0.8 (11)C19—P2—C25—C30−28.7 (6)
C2—C3—C4—C5−0.3 (12)C31—P2—C25—C3080.0 (6)
C3—C4—C5—C61.1 (11)Cu1—P2—C25—C30−148.0 (5)
C2—C1—C6—C5−0.2 (10)C19—P2—C25—C26153.1 (5)
P1—C1—C6—C5−177.1 (5)C31—P2—C25—C26−98.3 (6)
C4—C5—C6—C1−0.8 (11)Cu1—P2—C25—C2633.7 (6)
C13—P1—C7—C12−111.1 (6)C30—C25—C26—C27−1.5 (10)
C1—P1—C7—C12139.9 (6)P2—C25—C26—C27176.8 (6)
Cu1—P1—C7—C1210.0 (7)C25—C26—C27—C28−0.4 (12)
C13—P1—C7—C872.0 (6)C26—C27—C28—C292.3 (13)
C1—P1—C7—C8−37.0 (6)C27—C28—C29—C30−2.2 (12)
Cu1—P1—C7—C8−166.9 (5)C28—C29—C30—C250.2 (11)
C12—C7—C8—C9−0.7 (10)C26—C25—C30—C291.6 (10)
P1—C7—C8—C9176.2 (6)P2—C25—C30—C29−176.6 (5)
C7—C8—C9—C101.3 (11)C19—P2—C31—C32−81.9 (6)
C8—C9—C10—C11−1.5 (13)C25—P2—C31—C32171.8 (6)
C9—C10—C11—C121.1 (13)Cu1—P2—C31—C3242.0 (7)
C8—C7—C12—C110.3 (11)C19—P2—C31—C36100.8 (6)
P1—C7—C12—C11−176.7 (6)C25—P2—C31—C36−5.5 (7)
C10—C11—C12—C7−0.5 (13)Cu1—P2—C31—C36−135.3 (6)
C7—P1—C13—C1412.0 (7)C36—C31—C32—C33−1.2 (11)
C1—P1—C13—C14119.6 (6)P2—C31—C32—C33−178.7 (6)
Cu1—P1—C13—C14−117.1 (6)C31—C32—C33—C341.3 (12)
C7—P1—C13—C18−171.7 (6)C32—C33—C34—C35−0.3 (13)
C1—P1—C13—C18−64.2 (6)C33—C34—C35—C36−0.7 (13)
Cu1—P1—C13—C1859.2 (6)C34—C35—C36—C310.8 (13)
C18—C13—C14—C150.3 (12)C32—C31—C36—C350.1 (11)
P1—C13—C14—C15176.6 (7)P2—C31—C36—C35177.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1C···F20.851.872.71 (3)171
O1—H1D···F3i0.851.982.82 (3)171
C28—H28···F4ii0.932.513.25 (3)137

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2555).

References

  • Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099–1106.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Engelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125–133.
  • Fu, W.-F., Gan, X., Che, C.-M., Cao, Q.-Y., Zhou, Z.-Y. & Zhu, N.-Y. (2004). Chem. Eur. J.10, 2228–2236. [PubMed]
  • Kirchhoff, J. R., McMillin, D. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). Inorg. Chem.24, 3928–2933.
  • Mao, Z., Chao, H.-Y., Hui, Z., Che, C.-M., Fu, W.-F., Cheung, K.-K. & Zhu, N. (2003). Chem. Eur. J.9, 2885–2997.
  • Meng, X.-T., Li, Q.-S., Xu, F.-B., Song, H.-B., Anson, C. E. & Zhang, Z.-Z. (2006). Inorg. Chem.45, 7986–7987. [PubMed]
  • Moudam, O., Kaeser, A., Delavaux-Nicot, B., Duhayon, C., Holler, M., Accorsi, G., Armaroli, N., Seguy, I., Navarro, J., Destruel, P. & Nierengarten, J. (2007). Chem. Commun. pp. 3077–3079. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Q., Zhou, Q., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). Adv. Mater.16, 432–436.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography