PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1806.
Published online 2009 July 11. doi:  10.1107/S1600536809024751
PMCID: PMC2977189

1,4-Bis(4-nitro­styr­yl)benzene

Abstract

The complete molecule of the title compound, C22H16N2O4, is generated by a crystallographic centre of inversion. The plane of the central aromatic ring is tilted by 11.85 (4)° with respect to the outer aromatic ring. The crystal packing is determined by van der Waals inter­actions, with stair-like stacking between adjacent aromatic rings. The stacks are staggered and each layer is approximately 3.8 Å from the next. The closest inter­molecular contact (approximately 2.42 Å) is between an O atom and a vinyl H atom.

Related literature

For background information on photonic materials, see: He et al. (2008 [triangle]). For stilbenes, see: Moreno-Fuquen et al. (2008 [triangle], 2009 [triangle]). For the synthesis, see: Borsche (1912 [triangle]); Nakatsuji et al. (1991 [triangle]). For a related structure, see: Bazan et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1806-scheme1.jpg

Experimental

Crystal data

  • C22H16N2O4
  • M r = 372.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1806-efi1.jpg
  • a = 7.4689 (12) Å
  • b = 16.615 (3) Å
  • c = 7.3917 (12) Å
  • β = 108.824 (3)°
  • V = 868.2 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.40 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART Platform CCD diffractometer
  • Absorption correction: none
  • 10088 measured reflections
  • 2001 independent reflections
  • 1486 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.116
  • S = 1.02
  • 2001 reflections
  • 159 parameters
  • All H-atom parameters refined
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024751/ng2592sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024751/ng2592Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in part by Research Development Grants from the Pennsylvania State University. The author also acknowledges Benjamin E. Kucera, Victor G. Young Jr, and the X-Ray Crystallographic Laboratory at the University of Minnesota.

supplementary crystallographic information

Comment

Distyrylbenzene derivatives have been studied as laser dyes, components of organic light-emitting diodes, and as model compounds for the study of conductivity and molecular properties in substituted p-phenylenevinylene (PPV) polymers. For background information on photonic materials, see: He et al. (2008). For related systems of stilbene, see: Moreno-Fuquen et al. (2008, 2009). For literature related to the synthesis, see: Borsche (1912).

Experimental

Synthesis was carried out following literature procedures (Nakatsuj) by standard Wittig synthesis. To a mixture of p-phenylenedimethylene- bis(tripheny1phosphonium chloride) (1.00 g, 1.43 mmol) and p-nitrobenzaldehyde (0.432 g 2.86 mmol) in EtOH (10 ml) was added 0.2 mol/L EtOLi(20 ml, 4.0 mmol) and the mixture was stirred overnight. The resulting reaction mixture was poured into water to give a yellow precipitate (0.4 g, 75%) which was filtered off, washed with EtOH, dried under reduced pressure, m.p. 289–290. Crystallization attempts from various solvents yielded only powders. Yellowish orange crystals however were grown by sublimation.

Refinement

All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters.

Figures

Fig. 1.
The molecular structure of 1,4-di(4-nitrostyryl)benzene with atom lables.
Fig. 2.
Crystal packing viewed along the a axis.

Crystal data

C22H16N2O4F(000) = 388
Mr = 372.37Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 851 reflections
a = 7.4689 (12) Åθ = 2.5–27.5°
b = 16.615 (3) ŵ = 0.10 mm1
c = 7.3917 (12) ÅT = 173 K
β = 108.824 (3)°Needle, yellow
V = 868.2 (2) Å30.40 × 0.18 × 0.12 mm
Z = 2

Data collection

Bruker SMART Platform CCD diffractometer1486 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.041
graphiteθmax = 27.5°, θmin = 2.5°
ω scansh = −9→9
10088 measured reflectionsk = −21→21
2001 independent reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116All H-atom parameters refined
S = 1.01w = 1/[σ2(Fo2) + (0.0595P)2 + 0.1981P] where P = (Fo2 + 2Fc2)/3
2001 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.18351 (16)0.18081 (7)−0.31257 (17)0.0314 (3)
O1−0.31485 (14)0.14204 (7)−0.29133 (16)0.0424 (3)
O2−0.20374 (14)0.23244 (7)−0.43745 (15)0.0415 (3)
C10.00888 (18)0.16483 (8)−0.18509 (19)0.0268 (3)
C20.03516 (19)0.10424 (8)−0.0511 (2)0.0293 (3)
H2−0.068 (2)0.0758 (9)−0.037 (2)0.034 (4)*
C30.2169 (2)0.08605 (8)0.0623 (2)0.0299 (3)
H30.234 (2)0.0439 (10)0.154 (2)0.036 (4)*
C40.37281 (19)0.12795 (8)0.04412 (18)0.0274 (3)
C50.3394 (2)0.19080 (9)−0.0888 (2)0.0309 (3)
H50.440 (2)0.2209 (9)−0.102 (2)0.032 (4)*
C60.1573 (2)0.20926 (9)−0.2043 (2)0.0302 (3)
H60.137 (2)0.2519 (10)−0.294 (2)0.037 (4)*
C70.56766 (19)0.10807 (9)0.1593 (2)0.0304 (3)
H70.659 (2)0.1468 (9)0.145 (2)0.036 (4)*
C80.62118 (19)0.04369 (9)0.27155 (19)0.0296 (3)
H80.530 (2)0.0058 (9)0.282 (2)0.027 (4)*
C90.81506 (18)0.02312 (8)0.38677 (18)0.0270 (3)
C100.9717 (2)0.07130 (9)0.39725 (19)0.0291 (3)
H100.959 (2)0.1202 (10)0.333 (2)0.040 (4)*
C110.8479 (2)−0.04871 (9)0.49188 (19)0.0295 (3)
H110.740 (2)−0.0827 (10)0.482 (2)0.039 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0255 (6)0.0340 (7)0.0330 (6)0.0040 (5)0.0072 (5)−0.0046 (5)
O10.0245 (5)0.0545 (7)0.0467 (7)−0.0036 (5)0.0091 (5)−0.0009 (5)
O20.0348 (6)0.0417 (6)0.0426 (6)0.0100 (5)0.0050 (5)0.0105 (5)
C10.0224 (6)0.0296 (7)0.0267 (7)0.0041 (5)0.0054 (5)−0.0038 (5)
C20.0261 (7)0.0292 (7)0.0330 (7)−0.0030 (5)0.0103 (6)−0.0011 (6)
C30.0309 (7)0.0280 (7)0.0299 (7)−0.0001 (5)0.0087 (6)0.0026 (6)
C40.0267 (7)0.0279 (7)0.0260 (7)0.0015 (5)0.0064 (5)−0.0017 (5)
C50.0246 (7)0.0322 (7)0.0355 (8)−0.0021 (5)0.0093 (6)0.0031 (6)
C60.0295 (7)0.0293 (7)0.0312 (7)0.0027 (5)0.0089 (6)0.0056 (6)
C70.0244 (7)0.0331 (8)0.0314 (7)−0.0010 (6)0.0059 (6)−0.0005 (6)
C80.0260 (7)0.0312 (7)0.0300 (7)0.0002 (6)0.0071 (5)−0.0017 (6)
C90.0278 (7)0.0301 (7)0.0221 (6)0.0037 (5)0.0066 (5)−0.0032 (5)
C100.0313 (7)0.0283 (7)0.0268 (7)0.0034 (5)0.0082 (5)0.0026 (5)
C110.0270 (7)0.0313 (7)0.0294 (7)−0.0008 (5)0.0082 (5)−0.0011 (6)

Geometric parameters (Å, °)

N1—O11.2253 (16)C5—H50.932 (16)
N1—O21.2332 (15)C6—H60.950 (16)
N1—C11.4661 (17)C7—C81.334 (2)
C1—C61.3765 (19)C7—H70.969 (16)
C1—C21.381 (2)C8—C91.4640 (19)
C2—C31.379 (2)C8—H80.951 (15)
C2—H20.940 (16)C9—C101.399 (2)
C3—C41.4001 (19)C9—C111.4020 (19)
C3—H30.953 (16)C10—C11i1.384 (2)
C4—C51.3999 (19)C10—H100.930 (17)
C4—C71.4670 (19)C11—C10i1.384 (2)
C5—C61.3868 (19)C11—H110.968 (17)
O1—N1—O2123.49 (12)C1—C6—C5118.71 (13)
O1—N1—C1118.79 (12)C1—C6—H6121.2 (10)
O2—N1—C1117.71 (11)C5—C6—H6120.1 (10)
C6—C1—C2122.13 (12)C8—C7—C4125.71 (13)
C6—C1—N1119.44 (12)C8—C7—H7121.2 (9)
C2—C1—N1118.42 (12)C4—C7—H7113.1 (9)
C3—C2—C1118.68 (13)C7—C8—C9126.21 (14)
C3—C2—H2120.4 (9)C7—C8—H8120.2 (9)
C1—C2—H2120.9 (9)C9—C8—H8113.6 (9)
C2—C3—C4121.26 (13)C10—C9—C11117.57 (12)
C2—C3—H3118.2 (9)C10—C9—C8123.46 (13)
C4—C3—H3120.6 (9)C11—C9—C8118.97 (13)
C5—C4—C3118.20 (12)C11i—C10—C9120.98 (13)
C5—C4—C7119.61 (13)C11i—C10—H10117.5 (10)
C3—C4—C7122.18 (13)C9—C10—H10121.5 (10)
C6—C5—C4120.96 (13)C10i—C11—C9121.45 (13)
C6—C5—H5118.6 (9)C10i—C11—H11121.0 (9)
C4—C5—H5120.5 (9)C9—C11—H11117.6 (9)
O1—N1—C1—C6−178.44 (12)N1—C1—C6—C5−176.92 (12)
O2—N1—C1—C62.28 (19)C4—C5—C6—C10.4 (2)
O1—N1—C1—C22.67 (19)C5—C4—C7—C8−170.57 (14)
O2—N1—C1—C2−176.61 (12)C3—C4—C7—C89.5 (2)
C6—C1—C2—C3−2.3 (2)C4—C7—C8—C9179.87 (13)
N1—C1—C2—C3176.57 (12)C7—C8—C9—C101.9 (2)
C1—C2—C3—C40.3 (2)C7—C8—C9—C11−177.62 (13)
C2—C3—C4—C51.9 (2)C11—C9—C10—C11i−0.2 (2)
C2—C3—C4—C7−178.18 (13)C8—C9—C10—C11i−179.77 (13)
C3—C4—C5—C6−2.3 (2)C10—C9—C11—C10i0.2 (2)
C7—C4—C5—C6177.80 (13)C8—C9—C11—C10i179.80 (13)
C2—C1—C6—C51.9 (2)

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2592).

References

  • Bazan, G., Bartholomew, G., Bu, X. & Lachicotte, R. (2000). Chem. Mater.12, 1422–1430.
  • Borsche, W. (1912). Justus Liebigs Ann. Chem.386, 351-73.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • He, T., Wang, C., Pan, X., Yang, H. & Lu, G. (2008). Dyes Pigm.82, 47–52.
  • Moreno-Fuquen, R., Aguirre, L. & Kennedy, A. R. (2008). Acta Cryst. E64, o2259. [PMC free article] [PubMed]
  • Moreno-Fuquen, R., Dvries, R., Theodoro, J. & Ellena, J. (2009). Acta Cryst. E65, o1371. [PMC free article] [PubMed]
  • Nakatsuji, S., Akiyama, S., Katzerb, G. & Fabian, W. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 861–867.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography