PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1849.
Published online 2009 July 11. doi:  10.1107/S1600536809025604
PMCID: PMC2977178

tert-Butyl N-{4-methyl-3-[4-(3-pyrid­yl)pyrimidin-2-yl­oxy]phen­yl}carbamate

Abstract

In the mol­ecule of the title compound, C21H22N4O3, the pyrimidine ring is oriented at dihedral angles of 0.51 (3) and 50.76 (3)° to the pyridine and benzene rings, respectively. In the crystal structure, inter­molecular N—H(...)N hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R 2 2(24) ring motifs; the dimers are linked by inter­molecular C—H(...)O hydrogen bonds into a two-dimensional network. π–π contacts between the benzene rings and between the pyrimidine and pyridine rings [centroid–centroid distances = 3.891 (1) and 3.646 (1) Å, respectively] may further stabilize the structure. Two weak C—H(...)π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For ring-motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1849-scheme1.jpg

Experimental

Crystal data

  • C21H22N4O3
  • M r = 378.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1849-efi1.jpg
  • a = 9.951 (2) Å
  • b = 10.733 (2) Å
  • c = 11.577 (2) Å
  • α = 114.74 (3)°
  • β = 107.14 (3)°
  • γ = 99.97 (3)°
  • V = 1008.6 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.975, T max = 0.992
  • 3882 measured reflections
  • 3652 independent reflections
  • 2333 reflections with I > 2σ(I)
  • R int = 0.026
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.184
  • S = 1.01
  • 3652 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025604/hk2725sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025604/hk2725Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of phenol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C6-C11), B (N2/N3/C13-C16) and C (N4/C17-C21) are, of course, planar and the dihedral angles between them are A/B = 50.76 (3), A/C = 50.58 (3) and B/C = 0.51 (3) °.

In the crystal structure, intermolecular N-H···N hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers forming R22(24) ring motifs (Bernstein et al., 1995), and then intermolecular C-H···O hydrogen bonds (Table 1) link them into a two dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the phenyl rings and between the pyrimidine and the pyridine rings, Cg1—Cg1i and Cg2—Cg3ii [symmetry codes: (i) 1 - x, 2 - y, 1 - z, (ii) -x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings A (C6-C11), B (N2/N3/C13-C16) and C (N4/C17-C21), respectively] may further stabilize the structure, with centroid-centroid distances of 3.891 (1) and 3.646 (1) Å, respectively. There also exist two weak C—H···π interactions (Table 1).

Experimental

To a mixture of 2-(methylsulfonyl)-4-(pyridin-3-yl)pyrimidine (47.1 g, 0.2 mol) in DMF (75 ml) and tert-butyl-3-hydroxy-4-methylphenylcarbamate (44.7 g, 0.2 mol) in DMF (150 ml) was added sodium hydride (44.4 g) slowly and was stirred for 18 h at room temperature. After acidified with citric acid the reaction mixture was poured into ice-water (2000 ml). The precipitate was filtered, washed with water and was extracted with dichloromethane.The dichloromethane layer was dried over anhydrous magnesium sulfate and evaporated in vacuo. The residue was recrystallized from ethyl ether to give the title compound (yield; 73.4 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C21H22N4O3Z = 2
Mr = 378.43F(000) = 400
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.951 (2) ÅCell parameters from 25 reflections
b = 10.733 (2) Åθ = 9–13°
c = 11.577 (2) ŵ = 0.09 mm1
α = 114.74 (3)°T = 294 K
β = 107.14 (3)°Block, colorless
γ = 99.97 (3)°0.30 × 0.20 × 0.10 mm
V = 1008.6 (6) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer2333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 0→11
Absorption correction: ψ scan (North et al., 1968)k = −12→12
Tmin = 0.975, Tmax = 0.992l = −13→13
3882 measured reflections3 standard reflections every 120 min
3652 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.184w = 1/[σ2(Fo2) + (0.1P)2 + 0.07P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3652 reflectionsΔρmax = 0.29 e Å3
254 parametersΔρmin = −0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0153 (2)0.8866 (2)0.2102 (2)0.0600 (6)
O20.0613 (2)0.7528 (2)0.3167 (2)0.0719 (7)
O30.4840 (2)0.8449 (2)0.7311 (2)0.0594 (6)
N10.2087 (2)0.9880 (2)0.4085 (2)0.0498 (6)
H1A0.21411.05990.39290.060*
N20.2426 (2)0.7463 (2)0.7031 (2)0.0429 (5)
N30.4351 (3)0.6437 (3)0.7463 (3)0.0574 (7)
N4−0.1874 (3)0.7568 (2)0.6228 (3)0.0567 (7)
C1−0.1644 (4)0.8538 (4)0.0096 (4)0.0910 (12)
H1B−0.17310.94580.06400.136*
H1C−0.25700.7920−0.07080.136*
H1D−0.08550.8694−0.02000.136*
C2−0.1138 (4)0.6358 (4)0.0150 (4)0.0862 (11)
H2B−0.09220.59190.07240.129*
H2C−0.03390.6503−0.01360.129*
H2D−0.20570.5727−0.06590.129*
C3−0.2421 (4)0.7685 (5)0.1575 (4)0.0929 (12)
H3B−0.24850.86300.20800.139*
H3C−0.21190.73120.21960.139*
H3D−0.33810.70320.08340.139*
C4−0.1288 (3)0.7813 (3)0.0971 (3)0.0550 (8)
C50.0919 (3)0.8649 (3)0.3128 (3)0.0490 (7)
C60.3229 (3)1.0147 (3)0.5304 (3)0.0417 (6)
C70.4275 (3)1.1551 (3)0.6155 (3)0.0515 (7)
H7A0.42021.22580.58980.062*
C80.5415 (3)1.1899 (3)0.7372 (3)0.0573 (8)
H8A0.61021.28440.79260.069*
C90.5577 (3)1.0880 (3)0.7807 (3)0.0505 (7)
C100.4535 (3)0.9502 (3)0.6937 (3)0.0449 (6)
C110.3367 (3)0.9096 (3)0.5703 (3)0.0459 (7)
H11A0.26890.81470.51500.055*
C120.6828 (4)1.1258 (4)0.9146 (3)0.0766 (10)
H12A0.67421.04130.92560.115*
H12B0.67641.20280.99200.115*
H12C0.77731.15730.91140.115*
C130.3789 (3)0.7420 (3)0.7256 (3)0.0446 (6)
C140.3369 (3)0.5396 (3)0.7410 (3)0.0610 (8)
H14A0.36920.46920.75620.073*
C150.1907 (3)0.5281 (3)0.7147 (3)0.0569 (8)
H15A0.12440.45100.70900.068*
C160.1453 (3)0.6373 (3)0.6967 (2)0.0404 (6)
C17−0.0094 (3)0.6389 (3)0.6684 (3)0.0404 (6)
C18−0.1188 (3)0.5330 (3)0.6602 (3)0.0507 (7)
H18A−0.09700.45740.67250.061*
C19−0.2597 (3)0.5405 (3)0.6339 (3)0.0571 (8)
H19A−0.33470.46970.62770.068*
C20−0.2896 (3)0.6538 (3)0.6167 (3)0.0525 (7)
H20A−0.38540.65840.60000.063*
C21−0.0505 (3)0.7479 (3)0.6477 (3)0.0519 (7)
H21A0.02170.81890.65140.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0613 (12)0.0482 (11)0.0602 (12)0.0112 (10)0.0039 (10)0.0353 (10)
O20.0703 (14)0.0469 (12)0.0834 (15)0.0087 (10)0.0013 (12)0.0443 (11)
O30.0419 (11)0.0666 (13)0.0880 (15)0.0232 (10)0.0201 (10)0.0567 (12)
N10.0556 (14)0.0365 (12)0.0589 (14)0.0166 (11)0.0147 (12)0.0307 (11)
N20.0440 (13)0.0406 (12)0.0466 (13)0.0166 (10)0.0146 (10)0.0258 (10)
N30.0573 (15)0.0581 (15)0.0733 (17)0.0319 (13)0.0248 (13)0.0435 (14)
N40.0489 (14)0.0506 (14)0.0806 (18)0.0231 (12)0.0241 (13)0.0406 (14)
C10.089 (3)0.086 (3)0.079 (2)0.018 (2)0.000 (2)0.053 (2)
C20.101 (3)0.064 (2)0.071 (2)0.030 (2)0.023 (2)0.0216 (19)
C30.068 (2)0.119 (3)0.106 (3)0.039 (2)0.037 (2)0.066 (3)
C40.0508 (17)0.0516 (17)0.0580 (18)0.0161 (14)0.0135 (15)0.0299 (15)
C50.0509 (16)0.0428 (15)0.0578 (17)0.0181 (13)0.0175 (14)0.0313 (14)
C60.0423 (14)0.0407 (14)0.0512 (16)0.0192 (12)0.0210 (13)0.0275 (13)
C70.0546 (17)0.0417 (15)0.0616 (18)0.0178 (13)0.0215 (15)0.0296 (14)
C80.0544 (17)0.0427 (16)0.0601 (18)0.0088 (13)0.0149 (15)0.0219 (14)
C90.0457 (15)0.0533 (17)0.0540 (17)0.0176 (14)0.0182 (13)0.0293 (14)
C100.0398 (14)0.0521 (16)0.0591 (17)0.0218 (13)0.0230 (13)0.0375 (14)
C110.0455 (15)0.0396 (14)0.0556 (17)0.0150 (12)0.0194 (13)0.0271 (13)
C120.066 (2)0.079 (2)0.065 (2)0.0115 (18)0.0066 (17)0.0370 (19)
C130.0442 (15)0.0469 (15)0.0458 (15)0.0180 (12)0.0138 (12)0.0278 (13)
C140.064 (2)0.0559 (18)0.086 (2)0.0355 (16)0.0306 (17)0.0495 (18)
C150.0608 (19)0.0468 (16)0.078 (2)0.0229 (14)0.0281 (16)0.0424 (16)
C160.0502 (15)0.0341 (13)0.0380 (14)0.0169 (12)0.0157 (12)0.0193 (11)
C170.0445 (15)0.0343 (13)0.0423 (14)0.0150 (11)0.0142 (12)0.0210 (11)
C180.0527 (17)0.0448 (15)0.0610 (18)0.0179 (13)0.0187 (14)0.0343 (14)
C190.0512 (17)0.0516 (17)0.072 (2)0.0109 (14)0.0213 (15)0.0392 (16)
C200.0439 (15)0.0542 (17)0.0623 (18)0.0186 (13)0.0200 (14)0.0321 (15)
C210.0466 (16)0.0412 (15)0.073 (2)0.0157 (12)0.0196 (14)0.0363 (15)

Geometric parameters (Å, °)

O1—C41.463 (3)C6—C71.391 (4)
O1—C51.344 (3)C6—C111.399 (3)
O2—C51.211 (3)C7—C81.373 (4)
O3—C101.418 (3)C7—H7A0.9300
O3—C131.349 (3)C8—C91.396 (4)
N1—C51.345 (3)C8—H8A0.9300
N1—C61.403 (3)C9—C101.372 (4)
N1—H1A0.8600C9—C121.509 (4)
N3—C131.349 (3)C10—C111.380 (4)
N3—C141.318 (4)C11—H11A0.9300
N4—C201.327 (3)C12—H12A0.9600
N4—C211.336 (3)C12—H12B0.9600
C1—C41.518 (4)C12—H12C0.9600
C1—H1B0.9600C14—C151.367 (4)
C1—H1C0.9600C14—H14A0.9300
C1—H1D0.9600C15—C161.397 (3)
N2—C131.317 (3)C15—H15A0.9300
N2—C161.344 (3)C16—C171.482 (4)
C2—C41.512 (4)C17—C181.380 (4)
C2—H2B0.9600C17—C211.391 (3)
C2—H2C0.9600C18—C191.368 (4)
C2—H2D0.9600C18—H18A0.9300
C3—C41.507 (5)C19—C201.379 (4)
C3—H3B0.9600C19—H19A0.9300
C3—H3C0.9600C20—H20A0.9300
C3—H3D0.9600C21—H21A0.9300
C5—O1—C4122.7 (2)C9—C8—H8A118.9
C13—O3—C10123.90 (19)C10—C9—C8116.0 (3)
C5—N1—C6128.6 (2)C10—C9—C12121.7 (3)
C5—N1—H1A115.7C8—C9—C12122.3 (3)
C6—N1—H1A115.7C9—C10—C11124.2 (2)
C13—N2—C16116.2 (2)C9—C10—O3114.6 (2)
C14—N3—C13113.6 (2)C11—C10—O3120.9 (2)
C4—C1—H1B109.5C10—C11—C6118.4 (2)
C4—C1—H1C109.5C10—C11—H11A120.8
H1B—C1—H1C109.5C6—C11—H11A120.8
C4—C1—H1D109.5C9—C12—H12A109.5
H1B—C1—H1D109.5C9—C12—H12B109.5
H1C—C1—H1D109.5H12A—C12—H12B109.5
C4—C2—H2B109.5C9—C12—H12C109.5
C4—C2—H2C109.5H12A—C12—H12C109.5
H2B—C2—H2C109.5H12B—C12—H12C109.5
C4—C2—H2D109.5N2—C13—O3120.7 (2)
H2B—C2—H2D109.5N2—C13—N3128.4 (3)
H2C—C2—H2D109.5O3—C13—N3110.9 (2)
C4—C3—H3B109.5N3—C14—C15124.3 (3)
C4—C3—H3C109.5N3—C14—H14A117.8
H3B—C3—H3C109.5C15—C14—H14A117.8
C4—C3—H3D109.5C14—C15—C16117.1 (3)
H3B—C3—H3D109.5C14—C15—H15A121.4
H3C—C3—H3D109.5C16—C15—H15A121.4
C20—N4—C21117.2 (2)N2—C16—C15120.4 (2)
O1—C4—C3109.0 (3)N2—C16—C17116.8 (2)
O1—C4—C2110.8 (2)C15—C16—C17122.8 (2)
C3—C4—C2112.3 (3)C18—C17—C21117.2 (2)
O1—C4—C1102.0 (2)C18—C17—C16122.0 (2)
C3—C4—C1111.1 (3)C21—C17—C16120.8 (2)
C2—C4—C1111.1 (3)C19—C18—C17119.3 (2)
O2—C5—O1125.6 (3)C19—C18—H18A120.3
O2—C5—N1126.3 (3)C17—C18—H18A120.3
O1—C5—N1108.1 (2)C18—C19—C20119.4 (3)
C7—C6—C11118.9 (2)C18—C19—H19A120.3
C7—C6—N1117.0 (2)C20—C19—H19A120.3
C11—C6—N1124.0 (2)N4—C20—C19122.8 (3)
C8—C7—C6120.3 (3)N4—C20—H20A118.6
C8—C7—H7A119.8C19—C20—H20A118.6
C6—C7—H7A119.8N4—C21—C17124.0 (2)
C7—C8—C9122.2 (3)N4—C21—H21A118.0
C7—C8—H8A118.9C17—C21—H21A118.0
C5—O1—C4—C364.0 (3)C16—N2—C13—O3178.7 (2)
C5—O1—C4—C2−60.1 (4)C16—N2—C13—N3−1.6 (4)
C5—O1—C4—C1−178.5 (3)C10—O3—C13—N2−9.7 (4)
C4—O1—C5—O28.5 (5)C10—O3—C13—N3170.6 (2)
C4—O1—C5—N1−172.4 (2)C14—N3—C13—N20.8 (4)
C6—N1—C5—O22.1 (5)C14—N3—C13—O3−179.5 (2)
C6—N1—C5—O1−177.0 (2)C13—N3—C14—C151.1 (5)
C5—N1—C6—C7−177.0 (3)N3—C14—C15—C16−2.0 (5)
C5—N1—C6—C112.9 (4)C13—N2—C16—C150.5 (4)
C11—C6—C7—C8−0.6 (4)C13—N2—C16—C17−178.7 (2)
N1—C6—C7—C8179.3 (3)C14—C15—C16—N21.1 (4)
C6—C7—C8—C90.0 (5)C14—C15—C16—C17−179.7 (3)
C7—C8—C9—C100.6 (4)N2—C16—C17—C18−179.7 (2)
C7—C8—C9—C12−179.9 (3)C15—C16—C17—C181.1 (4)
C8—C9—C10—C11−0.7 (4)N2—C16—C17—C210.9 (4)
C12—C9—C10—C11179.9 (3)C15—C16—C17—C21−178.3 (3)
C8—C9—C10—O3172.1 (2)C21—C17—C18—C19−0.6 (4)
C12—C9—C10—O3−7.3 (4)C16—C17—C18—C19180.0 (2)
C13—O3—C10—C9138.8 (3)C17—C18—C19—C20−0.3 (4)
C13—O3—C10—C11−48.2 (4)C21—N4—C20—C19−0.4 (4)
C9—C10—C11—C60.1 (4)C18—C19—C20—N40.8 (5)
O3—C10—C11—C6−172.3 (2)C20—N4—C21—C17−0.6 (4)
C7—C6—C11—C100.6 (4)C18—C17—C21—N41.1 (4)
N1—C6—C11—C10−179.3 (2)C16—C17—C21—N4−179.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.102.944 (4)165
C15—H15A···O2ii0.932.453.382 (4)177
C18—H18A···O2ii0.932.393.319 (4)174
C3—H3B···Cg1i0.962.863.560 (3)131
C12—H12B···Cg2iii0.962.903.788 (3)154

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2725).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography