PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1901.
Published online 2009 July 18. doi:  10.1107/S1600536809027020
PMCID: PMC2977165

N-[(6-Bromo-2-meth­oxy-3-quinol­yl)phenyl­meth­yl]-2-morpholino-N-(1-phenyl­ethyl)acetamide

Abstract

In the title compound, C31H32BrN3O3, the morpholine ring adopts a chair conformation, and the planar quinoline system is twisted with respect to the phenyl rings, with dihedral angles of 17.6 (4) and 75.1 (3)°. Intramolecular C—H(...)O and C—H(...)N hydrogen bonds are present. The crystal packing is stabilized by weak C—H(...)O hydrogen bonding and C—H(...)π interactions.

Related literature

For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Andries et al. (2005 [triangle]); Gaurrand et al. (2006 [triangle]); Mao et al. (2007 [triangle]); Dalla Via et al. (2008 [triangle]). For related structures, see: Petit et al. (2007 [triangle]); Rahmani et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1901-scheme1.jpg

Experimental

Crystal data

  • C31H32BrN3O3
  • M r = 574.50
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1901-efi1.jpg
  • a = 7.8696 (14) Å
  • b = 9.4558 (16) Å
  • c = 9.8018 (17) Å
  • α = 90.544 (2)°
  • β = 100.562 (3)°
  • γ = 104.618 (2)°
  • V = 692.6 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.52 mm−1
  • T = 298 K
  • 0.45 × 0.33 × 0.31 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.525, T max = 0.625
  • 4628 measured reflections
  • 3796 independent reflections
  • 2917 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.236
  • S = 1.02
  • 3796 reflections
  • 346 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.47 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1149 Friedel pairs
  • Flack parameter: 0.14 (2)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027020/xu2541sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027020/xu2541Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the College of Chemical Science and Engineering of Liaoning University for the X-ray data collection.

supplementary crystallographic information

Comment

The quinolines and their derivatives as a class of extremely important heterocyclic compounds are used in a wide array of synthetic and medcinal applications. Some quinoline derivatives can give effective and good quality drugs treating many cancers (Dalla Via et al., 2008), and also used as antifungals and antituberculostatics drugs (Andries et al., 2005; Mao et al., 2007; Gaurrand et al., 2006). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the morpholine system exists in a chair conformation. The dihedral angles of aromatic rings are different from related structure TMC-207 (Petit et al., 2007; Rahmani et al., 2009), which has been completed Phase II clinical, and will be marked in 2012 as a kind of antituberculostatics drug. The dihedral angle between phenyl ring [C9—C14] and substituted quinolinyl groups is 17.6 (4)°, the dihedral angle between phenyl ring [C27—C32] and substituted quinolinyl groups is 75.1 (3)°, and the dihedral angle between phenyl ring [C9—C14] and phenyl ring[C27—C32] is 68.3 (4)°; while the dihedral angles between phenyl and substituted quinolinyl groups in related structure TMC-207 is 97.4°, and naphthalenyl and substituted quinolinyl groups is nearly coplanar. The distance of the centroids between the phenyl ring [C9—C14] and the ring containing N of the substituted quinolinyl groups is 3.598 Å. The results suggest that the differences between them are caused by steric three-dimensional space. The structural cohesion of the title compound is ensured by weaker contacts. The C—H···O and C—H···N hydrogen bonding is present in the crystal structure (Table 1).

Experimental

To a solution of N-((6-bromo-2-methoxyquinolin-3-yl)phenylmethyl)-2- chloro-N-(1-phenylethyl)acetamide (1 mmol) and potassium carbonate (5 mmol) in acetonitrile (50 ml), morpholine (1 mmol) was added. The mixture was stirred for 6 h below 353 K. The reaction mixture was left for 2 h and then diluted with water (50 ml). The resulting precipitate was collected by extraction, distillation and purified on silica gel column (30% ethyl acetate in hexane) to give white powder (91.2% yield). Crystals suitable for X-ray analysis were obtained from acetonitrile solution by slow evaporation.

Refinement

All H atoms were geometrically positioned (C—H 0.93–0.98 Å) and treated as riding, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Figures

Fig. 1.
The structure of the title compound with all non-H atom-labeling scheme and ellipsoids drawn at the 30% probability level.

Crystal data

C31H32BrN3O3Z = 1
Mr = 574.50F(000) = 298
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8696 (14) ÅCell parameters from 3537 reflections
b = 9.4558 (16) Åθ = 2.1–25.9°
c = 9.8018 (17) ŵ = 1.52 mm1
α = 90.544 (2)°T = 298 K
β = 100.562 (3)°Prism, colorless
γ = 104.618 (2)°0.45 × 0.33 × 0.31 mm
V = 692.6 (2) Å3

Data collection

Bruker SMART APEX CCD diffractometer3796 independent reflections
Radiation source: fine-focus sealed tube2917 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 25.9°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→8
Tmin = 0.525, Tmax = 0.625k = −11→11
4628 measured reflectionsl = −10→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.236w = 1/[σ2(Fo2) + (0.1743P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3796 reflectionsΔρmax = 0.66 e Å3
346 parametersΔρmin = −0.46 e Å3
4 restraintsAbsolute structure: Flack (1983), 1149 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.14 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.24839 (17)0.39015 (15)−0.05433 (14)0.1036 (5)
C40.3479 (12)−0.0267 (12)0.8340 (10)0.072 (2)
H4A0.33640.07120.85230.087*
H4B0.2288−0.08990.80160.087*
C30.4565 (11)−0.0236 (10)0.7234 (9)0.0593 (19)
H3A0.4610−0.12230.69990.071*
H3B0.40070.01470.64040.071*
C10.5983 (15)0.0096 (16)1.0047 (11)0.093 (3)
H1A0.6513−0.02861.08890.111*
H1B0.59280.10831.02740.111*
C20.7147 (14)0.0142 (12)0.8971 (10)0.078 (3)
H2A0.83280.07770.93220.093*
H2B0.7273−0.08330.87880.093*
C50.7473 (10)0.0755 (8)0.6650 (7)0.0459 (16)
H5A0.7580−0.02180.64330.055*
H5B0.86640.13650.70200.055*
C60.6689 (8)0.1390 (6)0.5298 (6)0.0317 (12)
C70.5793 (12)0.4161 (8)0.7307 (9)0.060 (2)
H7A0.52320.48040.67450.090*
H7B0.63320.46320.82100.090*
H7C0.49110.32760.74000.090*
C80.7214 (9)0.3799 (6)0.6625 (6)0.0373 (14)
H80.79060.33060.73070.045*
C90.8530 (10)0.5077 (7)0.6180 (6)0.0398 (14)
C141.0104 (10)0.4857 (8)0.5883 (9)0.0508 (16)
H141.03860.39710.60650.061*
C131.1252 (11)0.5939 (9)0.5320 (10)0.059 (2)
H131.22870.57580.51120.070*
C121.0920 (12)0.7264 (8)0.5058 (10)0.063 (2)
H121.17410.79980.47210.076*
C110.9277 (13)0.7502 (8)0.5314 (11)0.066 (2)
H110.89440.83520.50580.079*
C100.8187 (11)0.6417 (7)0.5959 (9)0.0532 (18)
H100.72010.66090.62460.064*
C150.5369 (8)0.3306 (6)0.4201 (6)0.0350 (13)
H150.49950.41060.46000.042*
C170.6440 (8)0.4009 (6)0.3131 (6)0.0332 (13)
C180.6119 (8)0.5339 (6)0.2557 (6)0.0328 (12)
C190.8276 (8)0.5586 (6)0.1238 (6)0.0353 (13)
C200.9212 (10)0.6379 (8)0.0287 (7)0.0461 (16)
H200.89670.7252−0.00030.055*
C211.0491 (11)0.5886 (8)−0.0229 (8)0.0540 (18)
H211.11070.6423−0.08590.065*
C221.0847 (9)0.4566 (8)0.0209 (7)0.0498 (17)
C230.9987 (10)0.3773 (7)0.1165 (7)0.0419 (14)
H231.02670.29120.14570.050*
C240.8690 (8)0.4261 (6)0.1699 (6)0.0357 (13)
C250.7735 (8)0.3516 (6)0.2667 (6)0.0323 (12)
H250.79920.26620.30040.039*
C260.4505 (13)0.7175 (8)0.2544 (10)0.067 (2)
H26A0.50930.79450.32450.101*
H26B0.32420.70920.23600.101*
H26C0.49660.73960.17070.101*
C310.2225 (10)0.1953 (8)0.4322 (9)0.0499 (17)
H310.23640.25110.51410.060*
C300.0646 (10)0.0914 (9)0.3835 (11)0.062 (2)
H30−0.02740.07710.43350.074*
C290.0405 (10)0.0078 (10)0.2614 (12)0.065 (2)
H29−0.0676−0.06080.22860.078*
C280.1781 (13)0.0275 (10)0.1892 (11)0.072 (3)
H280.1658−0.03030.10900.086*
C270.3378 (8)0.1360 (7)0.2379 (8)0.0468 (16)
H270.42870.15300.18670.056*
C320.3609 (9)0.2165 (7)0.3588 (7)0.0383 (14)
N10.7011 (8)0.6132 (5)0.1700 (6)0.0387 (12)
N20.6404 (7)0.2747 (5)0.5409 (5)0.0327 (10)
N30.6363 (7)0.0673 (5)0.7712 (6)0.0411 (12)
O10.4833 (7)0.5790 (4)0.3030 (5)0.0468 (12)
O20.6376 (6)0.0666 (4)0.4219 (5)0.0418 (10)
O30.4266 (10)−0.0772 (9)0.9568 (7)0.088 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1037 (8)0.1453 (11)0.0862 (8)0.0497 (7)0.0549 (6)0.0297 (7)
C40.056 (5)0.088 (6)0.069 (6)−0.001 (4)0.029 (4)0.021 (5)
C30.058 (5)0.071 (5)0.048 (4)0.009 (4)0.017 (3)0.017 (4)
C10.074 (7)0.142 (9)0.057 (6)0.010 (7)0.025 (5)0.039 (6)
C20.090 (7)0.089 (6)0.050 (5)0.011 (5)0.016 (5)0.042 (5)
C50.052 (4)0.058 (4)0.041 (4)0.028 (3)0.024 (3)0.021 (3)
C60.036 (3)0.029 (3)0.035 (3)0.010 (2)0.018 (2)0.012 (2)
C70.077 (5)0.050 (4)0.053 (5)−0.005 (4)0.043 (4)−0.015 (3)
C80.049 (4)0.035 (3)0.027 (3)0.005 (3)0.014 (3)0.004 (2)
C90.055 (4)0.037 (3)0.026 (3)0.008 (3)0.009 (3)0.001 (2)
C140.048 (4)0.049 (4)0.058 (5)0.011 (3)0.020 (3)0.012 (3)
C130.039 (4)0.071 (5)0.073 (6)0.015 (3)0.029 (4)0.024 (4)
C120.071 (5)0.049 (4)0.064 (5)−0.002 (4)0.021 (4)0.004 (4)
C110.080 (6)0.039 (3)0.084 (6)0.006 (4)0.042 (5)0.015 (4)
C100.061 (4)0.041 (3)0.067 (5)0.015 (3)0.034 (4)0.001 (3)
C150.043 (3)0.033 (3)0.037 (3)0.017 (2)0.020 (3)0.014 (2)
C170.042 (3)0.028 (3)0.029 (3)0.005 (2)0.009 (2)0.005 (2)
C180.032 (3)0.032 (3)0.034 (3)0.007 (2)0.010 (2)0.007 (2)
C190.039 (3)0.039 (3)0.024 (3)0.001 (2)0.008 (2)0.008 (2)
C200.052 (4)0.048 (3)0.038 (4)0.005 (3)0.018 (3)0.019 (3)
C210.071 (5)0.058 (4)0.038 (4)0.009 (4)0.033 (3)0.026 (3)
C220.044 (4)0.071 (5)0.035 (4)0.010 (3)0.018 (3)0.008 (3)
C230.048 (4)0.051 (3)0.032 (3)0.016 (3)0.019 (3)0.014 (3)
C240.036 (3)0.040 (3)0.028 (3)0.005 (2)0.005 (2)0.005 (2)
C250.037 (3)0.035 (3)0.032 (3)0.011 (2)0.020 (2)0.017 (2)
C260.087 (6)0.051 (4)0.093 (7)0.046 (4)0.051 (5)0.045 (4)
C310.056 (4)0.052 (4)0.058 (4)0.029 (3)0.031 (3)0.023 (3)
C300.034 (4)0.061 (4)0.102 (7)0.017 (3)0.033 (4)0.048 (5)
C290.036 (4)0.064 (5)0.090 (7)0.003 (3)0.012 (4)0.031 (5)
C280.067 (6)0.066 (5)0.065 (6)−0.002 (4)−0.003 (5)0.000 (4)
C270.026 (3)0.058 (4)0.055 (4)0.000 (3)0.018 (3)0.003 (3)
C320.036 (3)0.044 (3)0.040 (4)0.014 (3)0.015 (3)0.017 (3)
N10.045 (3)0.037 (2)0.034 (3)0.005 (2)0.015 (2)0.009 (2)
N20.040 (3)0.035 (2)0.025 (2)0.009 (2)0.013 (2)0.0047 (19)
N30.047 (3)0.041 (3)0.038 (3)0.011 (2)0.014 (2)0.012 (2)
O10.062 (3)0.036 (2)0.055 (3)0.023 (2)0.030 (2)0.021 (2)
O20.049 (3)0.037 (2)0.044 (3)0.0130 (19)0.018 (2)0.0039 (19)
O30.090 (5)0.117 (5)0.062 (4)0.017 (4)0.036 (4)0.051 (4)

Geometric parameters (Å, °)

Br1—C221.829 (8)C15—N21.490 (8)
C4—O31.396 (12)C15—C171.519 (9)
C4—C31.495 (13)C15—C321.540 (9)
C4—H4A0.9700C15—H150.9800
C4—H4B0.9700C17—C251.367 (9)
C3—N31.448 (10)C17—C181.444 (8)
C3—H3A0.9700C18—N11.313 (8)
C3—H3B0.9700C18—N11.313 (8)
C1—O31.386 (13)C18—O11.344 (8)
C1—C21.513 (16)C19—N11.372 (9)
C1—H1A0.9700C19—N11.372 (9)
C1—H1B0.9700C19—C201.400 (9)
C2—N31.430 (10)C19—C241.429 (8)
C2—H2A0.9700C20—C211.380 (11)
C2—H2B0.9700C20—H200.9300
C5—N31.468 (9)C21—C221.402 (11)
C5—C61.549 (8)C21—H210.9300
C5—H5A0.9700C22—C231.374 (10)
C5—H5B0.9700C23—C241.400 (10)
C6—O21.206 (8)C23—H230.9300
C6—O21.206 (8)C24—C251.403 (9)
C6—N21.364 (7)C25—H250.9300
C7—C81.509 (10)C26—O11.465 (7)
C7—H7A0.9600C26—H26A0.9600
C7—H7B0.9600C26—H26B0.9600
C7—H7C0.9600C26—H26C0.9600
C8—N21.482 (8)C31—C301.377 (12)
C8—C91.506 (9)C31—C321.387 (10)
C8—H80.9800C31—H310.9300
C9—C101.372 (9)C30—C291.384 (15)
C9—C141.387 (10)C30—H300.9300
C14—C131.376 (12)C29—C281.375 (14)
C14—H140.9300C29—H290.9300
C13—C121.361 (12)C28—C271.407 (11)
C13—H130.9300C28—H280.9300
C12—C111.431 (13)C27—C321.360 (11)
C12—H120.9300C27—H270.9300
C11—C101.398 (12)N1—N10.000
C11—H110.9300O2—O20.000
C10—H100.9300
O3—C4—C3111.4 (8)N2—C15—H15104.8
O3—C4—H4A109.3C17—C15—H15104.8
C3—C4—H4A109.3C32—C15—H15104.8
O3—C4—H4B109.3C25—C17—C18115.7 (5)
C3—C4—H4B109.3C25—C17—C15125.9 (5)
H4A—C4—H4B108.0C18—C17—C15118.4 (5)
N3—C3—C4110.2 (7)N1—C18—O1119.9 (5)
N3—C3—H3A109.6N1—C18—O1119.9 (5)
C4—C3—H3A109.6N1—C18—C17125.8 (6)
N3—C3—H3B109.6N1—C18—C17125.8 (6)
C4—C3—H3B109.6O1—C18—C17114.1 (5)
H3A—C3—H3B108.1N1—C19—C20118.1 (6)
O3—C1—C2111.4 (10)N1—C19—C20118.1 (6)
O3—C1—H1A109.4N1—C19—C24122.9 (6)
C2—C1—H1A109.4N1—C19—C24122.9 (6)
O3—C1—H1B109.4C20—C19—C24118.9 (6)
C2—C1—H1B109.4C21—C20—C19121.2 (6)
H1A—C1—H1B108.0C21—C20—H20119.4
N3—C2—C1110.1 (8)C19—C20—H20119.4
N3—C2—H2A109.6C20—C21—C22119.0 (6)
C1—C2—H2A109.6C20—C21—H21120.5
N3—C2—H2B109.6C22—C21—H21120.5
C1—C2—H2B109.6C23—C22—C21121.6 (7)
H2A—C2—H2B108.2C23—C22—Br1120.3 (6)
N3—C5—C6112.5 (5)C21—C22—Br1118.1 (5)
N3—C5—H5A109.1C22—C23—C24119.9 (6)
C6—C5—H5A109.1C22—C23—H23120.0
N3—C5—H5B109.1C24—C23—H23120.0
C6—C5—H5B109.1C23—C24—C25123.8 (5)
H5A—C5—H5B107.8C23—C24—C19119.3 (6)
O2—C6—N2124.1 (5)C25—C24—C19116.9 (6)
O2—C6—N2124.1 (5)C17—C25—C24121.9 (5)
O2—C6—C5118.5 (5)C17—C25—H25119.0
O2—C6—C5118.5 (5)C24—C25—H25119.0
N2—C6—C5117.4 (5)O1—C26—H26A109.5
C8—C7—H7A109.5O1—C26—H26B109.5
C8—C7—H7B109.5H26A—C26—H26B109.5
H7A—C7—H7B109.5O1—C26—H26C109.5
C8—C7—H7C109.5H26A—C26—H26C109.5
H7A—C7—H7C109.5H26B—C26—H26C109.5
H7B—C7—H7C109.5C30—C31—C32119.8 (8)
N2—C8—C9108.4 (5)C30—C31—H31120.1
N2—C8—C7111.1 (5)C32—C31—H31120.1
C9—C8—C7116.3 (5)C31—C30—C29121.1 (8)
N2—C8—H8106.9C31—C30—H30119.4
C9—C8—H8106.9C29—C30—H30119.4
C7—C8—H8106.9C28—C29—C30119.2 (8)
C10—C9—C14118.5 (7)C28—C29—H29120.4
C10—C9—C8123.0 (6)C30—C29—H29120.4
C14—C9—C8118.3 (6)C29—C28—C27119.4 (9)
C13—C14—C9120.5 (7)C29—C28—H28120.3
C13—C14—H14119.7C27—C28—H28120.3
C9—C14—H14119.7C32—C27—C28120.9 (8)
C12—C13—C14122.1 (8)C32—C27—H27119.5
C12—C13—H13119.0C28—C27—H27119.5
C14—C13—H13119.0C27—C32—C31119.5 (6)
C13—C12—C11118.4 (8)C27—C32—C15122.7 (6)
C13—C12—H12120.8C31—C32—C15117.7 (6)
C11—C12—H12120.8C18—N1—C19116.6 (5)
C10—C11—C12118.1 (7)C6—N2—C8124.1 (5)
C10—C11—H11121.0C6—N2—C15119.7 (5)
C12—C11—H11121.0C8—N2—C15115.9 (4)
C9—C10—C11121.9 (7)C2—N3—C3109.3 (6)
C9—C10—H10119.0C2—N3—C5111.6 (6)
C11—C10—H10119.0C3—N3—C5112.2 (6)
N2—C15—C17115.4 (5)C18—O1—C26116.8 (5)
N2—C15—C32111.3 (5)C1—O3—C4110.7 (7)
C17—C15—C32114.6 (5)
O3—C4—C3—N3−57.5 (10)C31—C30—C29—C281.2 (11)
O3—C1—C2—N357.8 (12)C30—C29—C28—C27−2.5 (12)
N3—C5—C6—O2−123.0 (6)C29—C28—C27—C323.3 (12)
N3—C5—C6—O2−123.0 (6)C28—C27—C32—C31−2.6 (10)
N3—C5—C6—N257.3 (8)C28—C27—C32—C15176.7 (7)
N2—C8—C9—C10104.9 (7)C30—C31—C32—C271.2 (9)
C7—C8—C9—C10−21.1 (9)C30—C31—C32—C15−178.1 (6)
N2—C8—C9—C14−70.2 (7)N2—C15—C32—C27−104.6 (7)
C7—C8—C9—C14163.8 (7)C17—C15—C32—C2728.5 (8)
C10—C9—C14—C13−2.9 (11)N2—C15—C32—C3174.7 (7)
C8—C9—C14—C13172.5 (8)C17—C15—C32—C31−152.2 (5)
C9—C14—C13—C121.3 (13)O1—C18—N1—N10.0 (5)
C14—C13—C12—C11−3.3 (14)C17—C18—N1—N10.0 (6)
C13—C12—C11—C106.8 (13)N1—C18—N1—C190(100)
C14—C9—C10—C116.7 (12)O1—C18—N1—C19−178.6 (5)
C8—C9—C10—C11−168.4 (7)C17—C18—N1—C194.8 (9)
C12—C11—C10—C9−8.7 (13)C20—C19—N1—N10.0 (6)
N2—C15—C17—C2540.5 (8)C24—C19—N1—N10.0 (5)
C32—C15—C17—C25−90.7 (7)N1—C19—N1—C180(100)
N2—C15—C17—C18−137.9 (5)C20—C19—N1—C18177.9 (6)
C32—C15—C17—C1890.9 (6)C24—C19—N1—C18−2.9 (8)
C25—C17—C18—N1−3.5 (9)O2—C6—N2—C8−162.8 (6)
C15—C17—C18—N1175.0 (6)O2—C6—N2—C8−162.8 (6)
C25—C17—C18—N1−3.5 (9)C5—C6—N2—C816.9 (8)
C15—C17—C18—N1175.0 (6)O2—C6—N2—C1510.9 (9)
C25—C17—C18—O1179.7 (5)O2—C6—N2—C1510.9 (9)
C15—C17—C18—O1−1.7 (7)C5—C6—N2—C15−169.4 (5)
N1—C19—C20—C21−179.4 (6)C9—C8—N2—C6112.1 (6)
N1—C19—C20—C21−179.4 (6)C7—C8—N2—C6−119.0 (7)
C24—C19—C20—C211.3 (10)C9—C8—N2—C15−61.8 (7)
C19—C20—C21—C220.2 (11)C7—C8—N2—C1567.2 (7)
C20—C21—C22—C23−1.7 (11)C17—C15—N2—C6−83.9 (6)
C20—C21—C22—Br1177.6 (6)C32—C15—N2—C648.9 (7)
C21—C22—C23—C241.6 (11)C17—C15—N2—C890.3 (6)
Br1—C22—C23—C24−177.7 (5)C32—C15—N2—C8−137.0 (5)
C22—C23—C24—C25179.4 (6)C1—C2—N3—C3−56.3 (11)
C22—C23—C24—C190.0 (9)C1—C2—N3—C5179.0 (8)
N1—C19—C24—C23179.4 (6)C4—C3—N3—C256.6 (10)
N1—C19—C24—C23179.4 (6)C4—C3—N3—C5−179.1 (7)
C20—C19—C24—C23−1.4 (8)C6—C5—N3—C2−177.6 (7)
N1—C19—C24—C25−0.1 (8)C6—C5—N3—C359.4 (7)
N1—C19—C24—C25−0.1 (8)N1—C18—O1—C260.0 (9)
C20—C19—C24—C25179.1 (6)N1—C18—O1—C260.0 (9)
C18—C17—C25—C240.1 (8)C17—C18—O1—C26176.9 (6)
C15—C17—C25—C24−178.3 (6)N2—C6—O2—O20.0 (5)
C23—C24—C25—C17−178.0 (6)C5—C6—O2—O20.0 (5)
C19—C24—C25—C171.4 (8)C2—C1—O3—C4−57.8 (13)
C32—C31—C30—C29−0.5 (10)C3—C4—O3—C158.1 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···N30.982.553.105 (7)116
C25—H25···O20.932.453.153 (7)133
C15—H15···O10.982.242.722 (8)109
C30—H30···O2i0.932.593.399 (10)145
C7—H7B···Cg4ii0.963.153.988 (8)147
C23—H23···Cg5iii0.932.793.662 (8)157

Symmetry codes: (i) x−1, y, z; (ii) x, y, z+1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2541).

References

  • Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W. H., Neefs, J. M., Winkler, H., Gestel, J. V., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223–227. [PubMed]
  • Bruker (2001). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). Eur J. Med. Chem 43, 429–434. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gaurrand, S., Desjardins, S., Meyer, C., Bonnet, P., Argoullon, J.-M., Qulyadi, H. & Guillemont, J. (2006). Chem. Biol. Drug Des 68, 77–84. [PubMed]
  • Mao, J. L., Wang, Y. H., Wan, B. J., Kozikowski, A. P. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624–1630. [PubMed]
  • Petit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct 837, 252–256.
  • Rahmani, H., Pirelahi, H. & Ng, S. W. (2009). Acta Cryst. E65, o603. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography