PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1837.
Published online 2009 July 11. doi:  10.1107/S1600536809026452
PMCID: PMC2977164

(E)-Methyl 2,6-dichloro-N-cyano­benzimidate

Abstract

The mol­ecule of the title compound, C9H6Cl2N2O, displays an E conformation about the C=N double bond. The N-cyano­imidate fragment is substanti­ally planar [maximum deviation 0.010 (4) Å] and perpendicular to the benzene ring [dihedral angle = 88.50 (14)°]. In the crystal packing, inter­molecular Cl(...)Cl inter­actions [3.490 (2) Å] are observed.

Related literature

For the synthesis of substituted cyano­imidates, see: Huffman & Schaefer (1963 [triangle]). For the crystal structures of compounds containing the N-cyano­imidate fragment, see: Zöllinger et al. (2006 [triangle]); Ponomareva et al. (1995 [triangle]); Jäger et al. (1996 [triangle]). For details of halogen(...)halogen inter­actions, see: Desiraju & Parthasarathy (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1837-scheme1.jpg

Experimental

Crystal data

  • C9H6Cl2N2O
  • M r = 229.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1837-efi1.jpg
  • a = 21.199 (4) Å
  • b = 8.548 (3) Å
  • c = 15.005 (4) Å
  • β = 128.49 (4)°
  • V = 2128.2 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 291 K
  • 0.52 × 0.46 × 0.28 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: spherical (WinGX; Farrugia, 1999 [triangle]) T min = 0.754, T max = 0.855
  • 2116 measured reflections
  • 1948 independent reflections
  • 1167 reflections with I > 2σ(I)
  • R int = 0.016
  • 3 standard reflections every 120 reflections intensity decay: 3.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.170
  • S = 1.04
  • 1948 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026452/rz2343sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026452/rz2343Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the course of our studies aimed to prepare substituted cyanoimidates (Huffman & Schaefer, 1963) from the corresponding aromatic aldehyde by oxidation using 1-bromopyrrolidine-2,5-dione, the title compound was obtained in 84% yield, and its crystal structure is reported herein.

The molecule of the title compound (Fig. 1) displays an E conformation about the C═N double bond. The O—C═N—C[equivalent]N N-cyanoimidate fragment is substantially planar [maximum deviation 0.010 (4) Å for atom N2] and forms a dihedral angle of 88.50 (14)° with the plane of the benzene ring. As far as the authors are aware, crystal structures reporting the presence of the N-cyanoimidate fragment are very rare, the only examples found in the literature being 1-(2,3-dibromo-10-oxo-7,8-dihydro-6H,10H-dipyrrolo[1,2-a:1',2'-d]pyrazin-5-yl)-2-(2,6-dimethylphenyl)-3-cyanoisourea monohydrate (Zöllinger et al., 2006), catena-poly-[(µ6-benzoylcyanamido)-thallium(I)] (Ponomareva et al., 1995) and tris(ethylenediamine)-nickel(II) bis[2-methyl-4-chlorophenoxy(cyanamido)acetate] (Jäger et al., 1996). In the crystal structure, molecules are connected by intermolecular Cl···Cl interactions of 3.490 (2) Å (Desiraju & Parthasarathy, 1989) into one-dimensional chains running parallel to [101].

Experimental

A mixture of 2,6-dichlorobenzaldehyde (1 mmol), H2NCN (3 equiv) and t-BuONa (3 equiv) in MeOH (8 ml) was stirred for 30 min at room temperature, then N-bromosuccinimide (NBS; 3 equiv) was added. After stirring for 12 h at 323 K, the mixture was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (100:1–25:1 v/v) as eluent to give the title compound in 84% yield. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether/acetyl acetate solution (25:1 v/v) at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Crystal packing of the title compound approximately viewed along the b axis. Cl···Cl interactions are shown as dotted lines.

Crystal data

C9H6Cl2N2OF(000) = 928
Mr = 229.06Dx = 1.430 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 28 reflections
a = 21.199 (4) Åθ = 4.8–9.2°
b = 8.548 (3) ŵ = 0.58 mm1
c = 15.005 (4) ÅT = 291 K
β = 128.49 (4)°Block, colourless
V = 2128.2 (16) Å30.52 × 0.46 × 0.28 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer1167 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
graphiteθmax = 25.5°, θmin = 2.5°
ω/2θ scansh = −25→17
Absorption correction: for a sphere (WinGX; Farrugia, 1999)k = 0→10
Tmin = 0.754, Tmax = 0.855l = −18→18
2116 measured reflections3 standard reflections every 120 reflections
1948 independent reflections intensity decay: 3.8%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.170w = 1/[σ2(Fo2) + (0.1053P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1948 reflectionsΔρmax = 0.30 e Å3
129 parametersΔρmin = −0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.54862 (5)0.67130 (14)0.65350 (8)0.0881 (5)
Cl20.24528 (6)0.72469 (18)0.26898 (9)0.1121 (6)
O10.36902 (14)0.4760 (2)0.5066 (2)0.0672 (7)
N10.35148 (15)0.7020 (3)0.5663 (2)0.0563 (7)
N20.3600 (2)0.9913 (4)0.5784 (3)0.0866 (10)
C10.40050 (16)0.7037 (3)0.4547 (2)0.0472 (7)
C20.48117 (18)0.7300 (3)0.5135 (3)0.0545 (8)
C30.5094 (2)0.8077 (4)0.4632 (3)0.0675 (9)
H30.56420.82590.50390.081*
C40.4550 (3)0.8571 (4)0.3523 (3)0.0745 (10)
H40.47350.90860.31790.089*
C50.3742 (2)0.8318 (4)0.2917 (3)0.0750 (10)
H50.33790.86640.21690.090*
C60.3471 (2)0.7542 (4)0.3432 (3)0.0613 (9)
C70.37157 (16)0.6295 (3)0.5129 (2)0.0486 (7)
C80.3474 (3)0.3932 (4)0.5685 (4)0.0930 (13)
H8A0.38810.41020.64870.139*
H8B0.34330.28330.55250.139*
H8C0.29660.43120.54530.139*
C90.3568 (2)0.8581 (4)0.5699 (3)0.0619 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0583 (5)0.1217 (9)0.0646 (6)0.0019 (5)0.0285 (5)0.0127 (5)
Cl20.0589 (6)0.1721 (13)0.0731 (7)−0.0024 (6)0.0252 (5)0.0231 (7)
O10.0903 (16)0.0367 (12)0.0958 (17)0.0011 (10)0.0684 (15)0.0009 (10)
N10.0733 (17)0.0436 (14)0.0707 (16)−0.0010 (11)0.0540 (15)0.0000 (11)
N20.129 (3)0.0544 (18)0.122 (3)−0.0121 (17)0.100 (3)−0.0177 (17)
C10.0566 (16)0.0401 (14)0.0550 (16)0.0025 (12)0.0397 (14)−0.0008 (12)
C20.0587 (17)0.0537 (17)0.0574 (17)0.0016 (13)0.0393 (15)−0.0039 (13)
C30.0639 (19)0.070 (2)0.087 (2)−0.0075 (16)0.056 (2)−0.0115 (18)
C40.103 (3)0.069 (2)0.090 (3)0.000 (2)0.079 (2)0.0017 (19)
C50.096 (3)0.078 (2)0.066 (2)0.013 (2)0.058 (2)0.0132 (18)
C60.0620 (18)0.068 (2)0.0564 (18)0.0022 (15)0.0382 (16)0.0003 (15)
C70.0502 (15)0.0413 (15)0.0535 (16)0.0004 (12)0.0319 (13)−0.0001 (12)
C80.123 (3)0.050 (2)0.144 (4)−0.004 (2)0.101 (3)0.014 (2)
C90.080 (2)0.055 (2)0.076 (2)−0.0076 (16)0.0612 (19)−0.0101 (16)

Geometric parameters (Å, °)

Cl1—C21.724 (3)C2—C31.389 (4)
Cl2—C61.724 (4)C3—C41.374 (5)
O1—C71.314 (3)C3—H30.9300
O1—C81.451 (4)C4—C51.367 (5)
N1—C71.278 (4)C4—H40.9300
N1—C91.338 (4)C5—C61.385 (5)
N2—C91.143 (4)C5—H50.9300
C1—C21.370 (4)C8—H8A0.9600
C1—C61.382 (4)C8—H8B0.9600
C1—C71.486 (4)C8—H8C0.9600
C7—O1—C8117.2 (3)C4—C5—H5120.4
C7—N1—C9117.1 (3)C6—C5—H5120.4
C2—C1—C6118.8 (3)C1—C6—C5120.9 (3)
C2—C1—C7119.9 (3)C1—C6—Cl2119.2 (3)
C6—C1—C7121.3 (3)C5—C6—Cl2119.8 (3)
C1—C2—C3121.1 (3)N1—C7—O1121.0 (3)
C1—C2—Cl1119.5 (2)N1—C7—C1125.6 (2)
C3—C2—Cl1119.4 (2)O1—C7—C1113.4 (2)
C4—C3—C2119.0 (3)O1—C8—H8A109.5
C4—C3—H3120.5O1—C8—H8B109.5
C2—C3—H3120.5H8A—C8—H8B109.5
C5—C4—C3121.1 (3)O1—C8—H8C109.5
C5—C4—H4119.5H8A—C8—H8C109.5
C3—C4—H4119.5H8B—C8—H8C109.5
C4—C5—C6119.2 (3)N2—C9—N1174.8 (4)
C6—C1—C2—C30.8 (4)C7—C1—C6—Cl2−2.1 (4)
C7—C1—C2—C3−176.1 (3)C4—C5—C6—C10.6 (5)
C6—C1—C2—Cl1178.8 (2)C4—C5—C6—Cl2178.7 (3)
C7—C1—C2—Cl11.9 (4)C9—N1—C7—O1179.2 (3)
C1—C2—C3—C4−0.6 (5)C9—N1—C7—C10.2 (4)
Cl1—C2—C3—C4−178.6 (3)C8—O1—C7—N1−3.7 (4)
C2—C3—C4—C50.4 (5)C8—O1—C7—C1175.4 (3)
C3—C4—C5—C6−0.4 (5)C2—C1—C7—N189.7 (4)
C2—C1—C6—C5−0.8 (5)C6—C1—C7—N1−87.1 (4)
C7—C1—C6—C5176.0 (3)C2—C1—C7—O1−89.4 (3)
C2—C1—C6—Cl2−178.9 (2)C6—C1—C7—O193.8 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2343).

References

  • Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc.111, 8725–8726.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). DIFRAC American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.
  • Huffman, K. R. & Schaefer, F. C. (1963). J. Org. Chem.28, 1816–1821.
  • Jäger, L., Krug, A., Hartung, H. & Kolbe, A. (1996). Z. Anorg. Allg. Chem.622, 361–366.
  • Ponomareva, V. V., Domasevich, K. V., Skopenko, V. V., Simonov, Y. A., Dvorkin, A. A. & Mazus, M. D. (1995). J. Inorg. Chem.40, 763–768.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zöllinger, M., Mayer, P. & Lindel, T. (2006). J. Org. Chem.71, 9431–9439. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography