PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1798.
Published online 2009 July 8. doi:  10.1107/S1600536809024842
PMCID: PMC2977163

1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-phenyl­isoquinoline

Abstract

The mol­ecular conformation of the title compound, C20H17N3, is stabilized by an intramolecular C—H(...)N inter­action. The crystal structure shows inter­molecular C—H(...)π inter­actions. The dihedral angle between the isoquinoline unit and the phenyl ring is 11.42 (1)° whereas the isoquinoline unit and the pendent dimethyl pryrazole unit form a dihedral angle of 50.1 (4)°. Furthermore, the angle between the mean plane of the phenyl ring and the dimethyl pyrazole unit is 47.3 (6)°.

Related literature

For general background to isoquinolines, see: Kametani et al. (1968 [triangle]); Broadhurst et al. (2001 [triangle]); Chao et al. (1999 [triangle]); Choudhury et al. (2002 [triangle], 2006 [triangle]); Hathwar et al. (2008 [triangle]); Elguero et al. 2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1798-scheme1.jpg

Experimental

Crystal data

  • C20H17N3
  • M r = 299.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1798-efi1.jpg
  • a = 18.3294 (14) Å
  • b = 8.3139 (7) Å
  • c = 21.6532 (17) Å
  • V = 3299.7 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 290 K
  • 0.18 × 0.11 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.949, T max = 0.995
  • 22808 measured reflections
  • 3065 independent reflections
  • 2608 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.129
  • S = 1.14
  • 3065 reflections
  • 276 parameters
  • All H-atom parameters refined
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024842/bt2974sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024842/bt2974Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

Isoquinolines are an integral part of many naturally occurring fused heterocycles and find applications in synthetic and pharmaceutical chemistry (Kametani et al., 1968). 3-substituted isoquinolines are of potent use in medicine, (Chao et al., 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst et al., 2001). Choudhury et al. (2002, 2006) reported crystal structures of substituted isoquinolines while Hathwar et al. (2008) report the crystal structure of an isoquinolinyl diselenide. Similarly, compounds containing the pyrazole motif are being developed in a wide range of therapeutic areas including CNS, metabolic diseases and endocrine functions, and oncology (Elguero et al., 2002). A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia. In view of the diverse applications of this class of compounds, we report here the crystal structure of isoquinoline pyrazole, namely 1-(2,5-dimethyl-1H-pyrrol-1-yl)-3-phenylisoquinoline.

Although there are no intermolecular C—H···N hydrogen bonds, the molecules are linked by C—H···π interactions.

In the absence of strong hydrogen-bond donors in (I), the crystal packing is controlled by the involvement of weak C—H..pi intermolecular interactions.

Experimental

The 3-phenylisoquinolinehydrazine, and the 1, 3-diketones namely acetylacetone, were taken in ethanol (1:1 ratio) and refluxed under nitrogen overnight. Then the reaction mass was quenched with water, extracted with ethylacetate, washed, dried, concentrated and purified by column chromatography to get titlted compound, (I). Single crystals of the title compound were obtained via recrystalization from a dichloromethane solution

Refinement

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.97 Å for aromatic and for methylene H atoms respectively and Uiso(H) = 1.2Ueq(C) for all carbon bound H atoms.

Figures

Fig. 1.
ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.
Fig. 2.
A packing excerpt from the crystal with dotted lines indicating intermolecular C—H···π hydrogen bonds. H atoms not involved in the interactions are omitted for clarity.

Crystal data

C20H17N3F(000) = 1264
Mr = 299.37Dx = 1.205 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1248 reflections
a = 18.3294 (14) Åθ = 2.2–27.2°
b = 8.3139 (7) ŵ = 0.07 mm1
c = 21.6532 (17) ÅT = 290 K
V = 3299.7 (5) Å3Block, colorless
Z = 80.18 × 0.11 × 0.07 mm

Data collection

Bruker SMART CCD area-detector diffractometer3065 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→20
Tmin = 0.949, Tmax = 0.995k = −10→10
22808 measured reflectionsl = −26→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129All H-atom parameters refined
S = 1.14w = 1/[σ2(Fo2) + (0.0517P)2 + 0.6765P] where P = (Fo2 + 2Fc2)/3
3065 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.09848 (7)0.53396 (16)0.26708 (6)0.0490 (4)
N20.02198 (7)0.52682 (18)0.18301 (6)0.0538 (4)
C10.08768 (9)0.47659 (19)0.21175 (7)0.0470 (4)
C80.13594 (9)0.37101 (19)0.18015 (7)0.0477 (4)
C30.21303 (10)0.3989 (2)0.27066 (8)0.0525 (4)
C90.20196 (9)0.3351 (2)0.21115 (8)0.0491 (4)
C20.16088 (9)0.4924 (2)0.29813 (8)0.0485 (4)
C100.16626 (9)0.5586 (2)0.36145 (8)0.0533 (4)
C40.25285 (11)0.2347 (2)0.18064 (9)0.0611 (5)
C16−0.04605 (9)0.5383 (2)0.20820 (9)0.0555 (5)
C70.12169 (11)0.3011 (2)0.12208 (8)0.0597 (5)
N30.02521 (8)0.5925 (2)0.12480 (7)0.0677 (5)
C20−0.06494 (13)0.4719 (3)0.26970 (12)0.0742 (6)
C50.23812 (12)0.1701 (3)0.12503 (9)0.0705 (6)
C110.22045 (12)0.5099 (3)0.40250 (9)0.0673 (6)
C150.11577 (12)0.6709 (3)0.38203 (9)0.0698 (6)
C60.17167 (12)0.2015 (3)0.09549 (10)0.0699 (6)
C120.22252 (14)0.5691 (3)0.46184 (10)0.0819 (7)
C18−0.04247 (12)0.6423 (3)0.11454 (9)0.0723 (6)
C130.17137 (16)0.6770 (3)0.48194 (11)0.0876 (8)
C17−0.08729 (12)0.6106 (3)0.16449 (10)0.0700 (6)
C140.11810 (15)0.7294 (3)0.44162 (11)0.0855 (7)
C19−0.06113 (15)0.7207 (4)0.05432 (11)0.1147 (10)
H19A−0.03120.81440.04870.172*
H19B−0.11160.75170.05450.172*
H19C−0.05260.64640.02120.172*
H30.2583 (10)0.378 (2)0.2919 (8)0.064 (5)*
H70.0783 (10)0.330 (2)0.1015 (8)0.070 (6)*
H40.2958 (10)0.212 (2)0.2010 (9)0.065 (5)*
H110.2580 (13)0.431 (3)0.3893 (10)0.090 (7)*
H50.2750 (11)0.100 (3)0.1032 (9)0.080 (6)*
H150.0784 (11)0.712 (3)0.3537 (9)0.079 (6)*
H20C−0.1161 (15)0.482 (3)0.2777 (10)0.106 (8)*
H17−0.1358 (12)0.633 (2)0.1678 (9)0.073 (6)*
H20B−0.0531 (14)0.356 (4)0.2713 (12)0.128 (10)*
H140.0827 (11)0.809 (3)0.4543 (10)0.083 (7)*
H120.2612 (13)0.529 (3)0.4907 (11)0.104 (8)*
H20A−0.0422 (13)0.531 (3)0.3038 (11)0.098 (8)*
H60.1605 (11)0.153 (3)0.0533 (11)0.090 (7)*
H130.1701 (12)0.718 (3)0.5233 (12)0.099 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0454 (8)0.0533 (8)0.0483 (8)−0.0005 (6)−0.0008 (6)0.0040 (6)
N20.0449 (8)0.0652 (9)0.0513 (8)0.0098 (7)−0.0043 (6)−0.0032 (7)
C10.0424 (9)0.0510 (9)0.0474 (9)0.0001 (7)−0.0008 (7)0.0054 (7)
C80.0459 (9)0.0484 (9)0.0489 (9)0.0017 (7)0.0051 (7)0.0088 (7)
C30.0449 (9)0.0588 (10)0.0540 (10)0.0024 (8)−0.0011 (8)0.0162 (8)
C90.0457 (9)0.0503 (9)0.0512 (10)0.0033 (7)0.0052 (7)0.0168 (7)
C20.0468 (9)0.0506 (9)0.0480 (9)−0.0056 (7)−0.0009 (7)0.0118 (7)
C100.0545 (10)0.0578 (10)0.0478 (10)−0.0113 (8)−0.0001 (8)0.0106 (8)
C40.0567 (11)0.0659 (11)0.0607 (12)0.0191 (9)0.0073 (9)0.0213 (9)
C160.0437 (9)0.0549 (10)0.0679 (12)0.0022 (8)−0.0008 (8)−0.0161 (9)
C70.0632 (12)0.0634 (11)0.0524 (11)0.0101 (9)−0.0005 (9)0.0026 (9)
N30.0647 (10)0.0857 (12)0.0528 (9)0.0237 (9)−0.0041 (7)0.0024 (8)
C200.0531 (13)0.0783 (16)0.0912 (17)−0.0012 (11)0.0162 (12)−0.0037 (13)
C50.0844 (15)0.0722 (13)0.0550 (12)0.0320 (11)0.0164 (11)0.0138 (10)
C110.0665 (13)0.0829 (14)0.0526 (12)−0.0092 (11)−0.0073 (9)0.0133 (10)
C150.0766 (14)0.0766 (13)0.0563 (12)−0.0002 (11)−0.0052 (10)−0.0015 (10)
C60.0863 (15)0.0710 (13)0.0524 (11)0.0241 (11)0.0046 (10)0.0018 (10)
C120.0833 (16)0.1038 (18)0.0586 (13)−0.0167 (14)−0.0144 (12)0.0141 (13)
C180.0707 (13)0.0816 (14)0.0647 (12)0.0302 (11)−0.0169 (10)−0.0101 (10)
C130.114 (2)0.0989 (18)0.0499 (13)−0.0335 (16)−0.0056 (13)−0.0015 (12)
C170.0485 (11)0.0761 (13)0.0853 (15)0.0197 (10)−0.0127 (10)−0.0192 (11)
C140.1017 (18)0.0896 (16)0.0651 (14)−0.0013 (15)0.0035 (13)−0.0127 (12)
C190.117 (2)0.149 (3)0.0785 (16)0.065 (2)−0.0211 (15)0.0087 (16)

Geometric parameters (Å, °)

N1—C11.305 (2)C20—H20C0.96 (3)
N1—C21.371 (2)C20—H20B0.99 (3)
N2—C161.364 (2)C20—H20A0.98 (3)
N2—N31.375 (2)C5—C61.400 (3)
N2—C11.418 (2)C5—H51.01 (2)
C1—C81.422 (2)C11—C121.376 (3)
C8—C71.410 (2)C11—H111.00 (2)
C8—C91.416 (2)C15—C141.380 (3)
C3—C21.368 (2)C15—H150.98 (2)
C3—C91.408 (2)C6—H61.02 (2)
C3—H30.966 (18)C12—C131.369 (4)
C9—C41.416 (2)C12—H121.00 (3)
C2—C101.481 (2)C18—C171.383 (3)
C10—C151.388 (3)C18—C191.498 (3)
C10—C111.393 (3)C13—C141.380 (3)
C4—C51.346 (3)C13—H130.96 (2)
C4—H40.922 (18)C17—H170.91 (2)
C16—C171.353 (3)C14—H140.97 (2)
C16—C201.482 (3)C19—H19A0.9600
C7—C61.362 (3)C19—H19B0.9600
C7—H70.943 (19)C19—H19C0.9600
N3—C181.326 (2)
C1—N1—C2119.00 (14)H20C—C20—H20A103.7 (19)
C16—N2—N3112.22 (14)H20B—C20—H20A112 (2)
C16—N2—C1128.39 (15)C4—C5—C6120.56 (19)
N3—N2—C1118.85 (13)C4—C5—H5121.0 (11)
N1—C1—N2115.09 (14)C6—C5—H5118.4 (11)
N1—C1—C8124.98 (15)C12—C11—C10120.7 (2)
N2—C1—C8119.92 (15)C12—C11—H11119.0 (13)
C7—C8—C9119.62 (16)C10—C11—H11120.2 (13)
C7—C8—C1124.66 (16)C14—C15—C10121.1 (2)
C9—C8—C1115.72 (15)C14—C15—H15119.0 (12)
C2—C3—C9120.75 (16)C10—C15—H15119.9 (12)
C2—C3—H3119.8 (11)C7—C6—C5120.4 (2)
C9—C3—H3119.4 (11)C7—C6—H6119.0 (12)
C3—C9—C4123.67 (16)C5—C6—H6120.6 (12)
C3—C9—C8118.52 (15)C13—C12—C11120.8 (2)
C4—C9—C8117.80 (17)C13—C12—H12120.2 (14)
C3—C2—N1120.85 (16)C11—C12—H12118.9 (15)
C3—C2—C10124.57 (15)N3—C18—C17111.41 (18)
N1—C2—C10114.57 (15)N3—C18—C19119.7 (2)
C15—C10—C11117.79 (19)C17—C18—C19128.89 (19)
C15—C10—C2120.19 (16)C12—C13—C14119.4 (2)
C11—C10—C2122.00 (18)C12—C13—H13123.1 (14)
C5—C4—C9121.39 (19)C14—C13—H13117.5 (14)
C5—C4—H4121.1 (12)C16—C17—C18107.44 (18)
C9—C4—H4117.5 (12)C16—C17—H17125.4 (13)
C17—C16—N2105.19 (18)C18—C17—H17127.1 (13)
C17—C16—C20131.6 (2)C15—C14—C13120.1 (3)
N2—C16—C20123.14 (17)C15—C14—H14119.1 (13)
C6—C7—C8120.20 (19)C13—C14—H14120.8 (13)
C6—C7—H7121.4 (12)C18—C19—H19A109.5
C8—C7—H7118.3 (12)C18—C19—H19B109.5
C18—N3—N2103.72 (16)H19A—C19—H19B109.5
C16—C20—H20C111.2 (14)C18—C19—H19C109.5
C16—C20—H20B110.1 (16)H19A—C19—H19C109.5
H20C—C20—H20B107 (2)H19B—C19—H19C109.5
C16—C20—H20A112.9 (14)
C2—N1—C1—N2−179.60 (14)N3—N2—C16—C171.0 (2)
C2—N1—C1—C80.5 (2)C1—N2—C16—C17172.43 (17)
C16—N2—C1—N1−43.2 (2)N3—N2—C16—C20177.88 (18)
N3—N2—C1—N1127.74 (16)C1—N2—C16—C20−10.7 (3)
C16—N2—C1—C8136.70 (18)C9—C8—C7—C6−1.0 (3)
N3—N2—C1—C8−52.4 (2)C1—C8—C7—C6179.82 (18)
N1—C1—C8—C7175.60 (16)C16—N2—N3—C18−0.9 (2)
N2—C1—C8—C7−4.3 (2)C1—N2—N3—C18−173.20 (16)
N1—C1—C8—C9−3.6 (2)C9—C4—C5—C60.4 (3)
N2—C1—C8—C9176.55 (14)C15—C10—C11—C121.4 (3)
C2—C3—C9—C4−178.55 (16)C2—C10—C11—C12−177.56 (18)
C2—C3—C9—C80.6 (2)C11—C10—C15—C14−1.5 (3)
C7—C8—C9—C3−176.34 (15)C2—C10—C15—C14177.43 (19)
C1—C8—C9—C32.9 (2)C8—C7—C6—C5−1.2 (3)
C7—C8—C9—C42.8 (2)C4—C5—C6—C71.5 (3)
C1—C8—C9—C4−177.96 (15)C10—C11—C12—C130.1 (3)
C9—C3—C2—N1−3.8 (2)N2—N3—C18—C170.4 (2)
C9—C3—C2—C10177.19 (15)N2—N3—C18—C19−179.4 (2)
C1—N1—C2—C33.3 (2)C11—C12—C13—C14−1.4 (4)
C1—N1—C2—C10−177.61 (14)N2—C16—C17—C18−0.7 (2)
C3—C2—C10—C15170.61 (17)C20—C16—C17—C18−177.2 (2)
N1—C2—C10—C15−8.4 (2)N3—C18—C17—C160.2 (3)
C3—C2—C10—C11−10.5 (3)C19—C18—C17—C16180.0 (2)
N1—C2—C10—C11170.48 (16)C10—C15—C14—C130.2 (4)
C3—C9—C4—C5176.59 (18)C12—C13—C14—C151.3 (4)
C8—C9—C4—C5−2.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···N30.94 (2)2.452 (17)3.001 (2)117.4 (13)
C4—H4···Cg2i0.91 (2)2.645 (17)3.325 (2)131.4 (13)

Symmetry codes: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2974).

References

  • Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem.2, 3860–3873. [PubMed]
  • Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274.
  • Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct.605, 71–77.
  • Elguero, J., Goya, P., Jagerovic, N. & Silva, A. M. S. (2002). Targets in Heterocyclic Systems, Vol. 6, pp. 52–98. Rome: Italian Society of Chemistry.
  • Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295. [PMC free article] [PubMed]
  • Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids Tokyo: Hirokawa; Amsterdam: Elsevier.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography