PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m979.
Published online 2009 July 22. doi:  10.1107/S1600536809028360
PMCID: PMC2977154

catena-Poly[[[tetra­aqua­manganese(II)]-μ-4,4′-bipyridine] bis­(3-hydroxy­cinnamate) dihydrate]

Abstract

The title compound, {[Mn(C10H8N2)(H2O)4](C9H7O3)2·2H2O}n, was obtained by the hydro­thermal reaction of manganese chloride with mixed 3-hydroxy­lcinnamic acid (H2 L) and 4,4′-bipyridine (4,4′-bipy) ligands. The structure contains [Mn(C10H8N2)(H2O)4]2+ cations with the MnII atoms lying on a centres of inversion and bridged into a linear chain along the a axis by 4,4′-bipy ligands, surrounded by HL anions and uncoordinated water mol­ecules. Extensive O—H(...)O hydrogen-bonding and weak π–π inter­actions [centroid–centroid distance = 3.7572  (3) Å] between the constituents lead to the formation of a three-dimensional supra­molecular network.

Related literature

For potential applications of compounds with supramolecular architectures, see: Niu et al. (2008 [triangle]); Xue et al. (2007 [triangle]); Ye et al. (2005 [triangle]); Zhang et al. (2009 [triangle]). For the synthesis of supra­molecular coordination compounds containing 4-pyridyl and carboxyl­ate groups, see: Feng et al. (2008 [triangle]); He et al. (2007 [triangle]); Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m979-scheme1.jpg

Experimental

Crystal data

  • [Mn(C10H8N2)(H2O)4](C9H7O3)2·2H2O
  • M r = 645.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m979-efi1.jpg
  • a = 11.6620 (12) Å
  • b = 11.2726 (13) Å
  • c = 11.6238 (13) Å
  • β = 96.520 (9)°
  • V = 1518.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.50 mm−1
  • T = 296 K
  • 0.21 × 0.14 × 0.07 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.92, T max = 0.97
  • 13208 measured reflections
  • 3513 independent reflections
  • 2293 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.118
  • S = 1.04
  • 3513 reflections
  • 217 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028360/at2846sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028360/at2846Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The construction of supramolecular architectures based on metal and organic building blocks is currently of great interest for their aesthetic architectures and potential functions such as adsorption, ion exchange, magnetic and luminescent materials (Niu et al., 2008; Xue et al., 2007; Ye et al., 2005; Zhang et al., 2009). Recently, we are interested in the synthesis of novel supramolecular coordination compounds which contain not only 4-pyridyl but also carboxylate groups in the crystal structure (He et al., 2007; Feng et al., 2008; Li et al., 2008). Here we report the crystal structure of the title compound, [Mn(C10H8N2)(H2O)4]2.2(C9H7O3).2H2O, (I).

The present X-ray single-crystal diffraction study reveals that (I) is a new coordination polymer involving Mn2+ and 3-hydroxycinnamate anions, as shown in Fig. 1. The MnII is hexacoordinated in an octahedral manner by four water molecules in the equatorial plane and two N atoms in the axial positions from two 4,4'-bipyridine molecules. The bond lengths of Mn—N and Mn—O are 2.2863 (17) Å and in the range 2.1641 (15)—2.1675 (17) Å, respectively. As shown in Fig. 2, the linear cationic chains, 3-Hydroxycinnamate anions and lattice water molecules are linked together through a series of O—H···O bonds with the hydrogen bonds lengths in the range of 2.702 (2)—2.838 (3) Å and bond angles between 171 (3) and 176 (3) °. The extensive hydrogen bonds together with the weak π-π interactions between hca- anions and 4,4'-bipyridine (the centroid-to-centroid distance is 3.7572 Å) stabilize the crystal structure, forming a three-dimensional network.

Experimental

MnCl2.4H2O (0.0973 g, 0.5 mmol), 3-hydroxycinnamic acid (0.1619 g, 1 mmol), NaOH (0.0405 g, 1 mmol), 4,4'-bipy (0.1562 g, 1 mmol) and H2O-ethanol (4:1, 15 mL) was sealed in a 25 ml stainless-steel reactor with a Telflon liner and was heated at 433 K for 3 d, then the reactor was cooled slowly to room temperature. The solution was filtered, giving yellow single crystals suitable for X-ray analysis in yield 30%.

Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. The water and hydroxyl H atoms were located from different maps, and their positions were refined isotropically, with O—H distances fixed by Owater—H = 0.85 (2) Å, Ohydroxyl—H = 0.96 (2) Å and H—H = 1.30 (2) Å, their displacement parameters were set to 1.5Ueq(Owater) and 1.2Ueq(Ohydroxyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) 2 - x, 1 - y, -1 - z; (ii) 3 - x, 1 - y, 1 ...
Fig. 2.
Packing diagram showing hydrogen bonds as dashed lines. All H atoms have been omitted for clarity.

Crystal data

[Mn(C10H8N2)(H2O)4](C9H7O3)2·2H2OF(000) = 674
Mr = 645.51Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1488 reflections
a = 11.6620 (12) Åθ = 1.8–27.7°
b = 11.2726 (13) ŵ = 0.50 mm1
c = 11.6238 (13) ÅT = 296 K
β = 96.520 (9)°Block, yellow
V = 1518.2 (3) Å30.21 × 0.14 × 0.07 mm
Z = 2

Data collection

Bruker APEXII area-detector diffractometer3513 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
graphiteRint = 0.060
ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→14
Tmin = 0.92, Tmax = 0.97k = −14→14
13208 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0147P] where P = (Fo2 + 2Fc2)/3
3513 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.21 e Å3
10 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn11.00000.5000−0.50000.02932 (15)
C11.24961 (19)0.5744 (2)−0.5720 (2)0.0384 (6)
H1A1.20600.6305−0.61640.046*
C21.36718 (19)0.5795 (2)−0.5695 (2)0.0383 (6)
H2A1.40080.6376−0.61160.046*
C31.43615 (18)0.4985 (2)−0.50437 (18)0.0316 (5)
C41.3781 (2)0.4144 (3)−0.4478 (3)0.0657 (9)
H4A1.41930.3561−0.40420.079*
C51.2599 (2)0.4158 (3)−0.4553 (3)0.0652 (9)
H5A1.22390.3575−0.41560.078*
C60.3636 (2)0.6015 (2)−0.1614 (2)0.0479 (6)
C70.2912 (2)0.6654 (3)−0.2419 (2)0.0529 (7)
H7A0.21150.6598−0.24230.063*
C80.3368 (2)0.7364 (3)−0.3205 (2)0.0519 (7)
H8A0.28810.7802−0.37340.062*
C90.4546 (2)0.7436 (2)−0.3218 (2)0.0479 (7)
H9A0.48490.7928−0.37510.057*
C100.5288 (2)0.6779 (2)−0.2439 (2)0.0397 (6)
C110.4815 (2)0.6072 (2)−0.1637 (2)0.0454 (6)
H11A0.52990.5630−0.11080.055*
C120.6538 (2)0.6860 (2)−0.2478 (2)0.0403 (6)
H12A0.67950.7441−0.29560.048*
C130.7334 (2)0.6189 (2)−0.1900 (2)0.0425 (6)
H13A0.70980.5621−0.13970.051*
C140.8572 (2)0.6292 (2)−0.20085 (19)0.0377 (6)
N11.19366 (15)0.49461 (16)−0.51532 (16)0.0353 (4)
O10.89468 (15)0.71680 (16)−0.25223 (15)0.0487 (5)
O1W1.02880 (17)0.43379 (17)−0.32434 (13)0.0502 (5)
H1WA1.049 (3)0.3672 (17)−0.298 (3)0.075*
H1WB1.004 (3)0.472 (2)−0.272 (2)0.075*
O20.92237 (14)0.54517 (16)−0.15829 (14)0.0443 (4)
O2W0.98772 (18)0.31913 (16)−0.56349 (17)0.0531 (5)
H2WA0.955 (3)0.260 (2)−0.542 (3)0.080*
H2WB1.022 (3)0.300 (3)−0.620 (2)0.080*
O30.32335 (17)0.5320 (2)−0.0786 (2)0.0769 (7)
H30.2485 (18)0.551 (3)−0.074 (3)0.092*
O3W0.11487 (15)0.61016 (17)−0.01468 (16)0.0480 (5)
H3WA0.110 (2)0.566 (2)0.0420 (18)0.072*
H3WB0.058 (2)0.593 (3)−0.0630 (19)0.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0232 (3)0.0318 (3)0.0335 (2)0.0007 (2)0.00570 (18)0.0012 (2)
C10.0256 (13)0.0441 (15)0.0449 (13)0.0012 (10)0.0012 (10)0.0104 (11)
C20.0261 (13)0.0458 (15)0.0431 (12)−0.0034 (10)0.0039 (10)0.0140 (11)
C30.0237 (11)0.0340 (12)0.0377 (11)0.0004 (10)0.0063 (9)0.0002 (10)
C40.0266 (15)0.066 (2)0.106 (2)0.0109 (13)0.0130 (14)0.0522 (18)
C50.0276 (15)0.064 (2)0.106 (2)0.0062 (13)0.0183 (15)0.0493 (18)
C60.0354 (15)0.0512 (17)0.0569 (15)0.0013 (12)0.0047 (12)−0.0016 (13)
C70.0354 (15)0.066 (2)0.0553 (16)0.0066 (13)−0.0035 (12)−0.0148 (14)
C80.0446 (17)0.0655 (19)0.0433 (14)0.0151 (14)−0.0059 (12)−0.0087 (13)
C90.0500 (18)0.0548 (17)0.0384 (13)0.0082 (13)0.0030 (12)−0.0054 (12)
C100.0356 (14)0.0437 (15)0.0393 (12)0.0037 (11)0.0018 (10)−0.0100 (11)
C110.0318 (14)0.0513 (16)0.0526 (15)0.0061 (12)0.0019 (11)0.0024 (12)
C120.0404 (15)0.0417 (15)0.0396 (12)0.0002 (12)0.0080 (11)−0.0057 (11)
C130.0372 (14)0.0433 (15)0.0485 (14)−0.0013 (11)0.0106 (11)0.0009 (12)
C140.0373 (14)0.0422 (14)0.0347 (12)−0.0033 (11)0.0082 (10)−0.0094 (11)
N10.0240 (10)0.0362 (11)0.0467 (10)0.0030 (9)0.0089 (8)0.0047 (9)
O10.0520 (11)0.0422 (11)0.0552 (10)−0.0082 (9)0.0199 (9)−0.0059 (8)
O1W0.0615 (13)0.0542 (12)0.0363 (9)0.0249 (10)0.0118 (8)0.0075 (8)
O20.0343 (10)0.0513 (11)0.0481 (9)0.0056 (8)0.0079 (8)−0.0013 (8)
O2W0.0644 (13)0.0367 (10)0.0639 (12)−0.0111 (9)0.0321 (10)−0.0091 (9)
O30.0394 (12)0.0962 (17)0.0977 (16)0.0068 (12)0.0190 (12)0.0337 (14)
O3W0.0375 (11)0.0509 (12)0.0554 (11)−0.0055 (9)0.0040 (8)0.0011 (9)

Geometric parameters (Å, °)

Mn1—O1W2.1641 (15)C7—H7A0.9300
Mn1—O1Wi2.1641 (15)C8—C91.378 (4)
Mn1—O2Wi2.1675 (17)C8—H8A0.9300
Mn1—O2W2.1675 (17)C9—C101.393 (3)
Mn1—N1i2.2863 (17)C9—H9A0.9300
Mn1—N12.2863 (17)C10—C111.388 (3)
C1—N11.329 (3)C10—C121.466 (3)
C1—C21.369 (3)C11—H11A0.9300
C1—H1A0.9300C12—C131.320 (3)
C2—C31.385 (3)C12—H12A0.9300
C2—H2A0.9300C13—C141.468 (3)
C3—C41.375 (3)C13—H13A0.9300
C3—C3ii1.482 (4)C14—O11.258 (3)
C4—C51.371 (3)C14—O21.278 (3)
C4—H4A0.9300O1W—H1WA0.833 (17)
C5—N11.323 (3)O1W—H1WB0.825 (16)
C5—H5A0.9300O2W—H2WA0.815 (17)
C6—O31.364 (3)O2W—H2WB0.832 (16)
C6—C111.380 (3)O3—H30.908 (18)
C6—C71.388 (4)O3W—H3WA0.832 (16)
C7—C81.368 (4)O3W—H3WB0.842 (16)
O1W—Mn1—O1Wi180.00 (10)C8—C7—H7A120.0
O1W—Mn1—O2Wi90.34 (8)C6—C7—H7A120.0
O1Wi—Mn1—O2Wi89.66 (8)C7—C8—C9120.4 (3)
O1W—Mn1—O2W89.66 (8)C7—C8—H8A119.8
O1Wi—Mn1—O2W90.34 (8)C9—C8—H8A119.8
O2Wi—Mn1—O2W180.00 (10)C8—C9—C10120.6 (3)
O1W—Mn1—N1i89.11 (7)C8—C9—H9A119.7
O1Wi—Mn1—N1i90.89 (7)C10—C9—H9A119.7
O2Wi—Mn1—N1i88.63 (7)C11—C10—C9118.5 (2)
O2W—Mn1—N1i91.37 (7)C11—C10—C12121.9 (2)
O1W—Mn1—N190.89 (7)C9—C10—C12119.6 (2)
O1Wi—Mn1—N189.11 (7)C6—C11—C10120.8 (2)
O2Wi—Mn1—N191.37 (7)C6—C11—H11A119.6
O2W—Mn1—N188.63 (7)C10—C11—H11A119.6
N1i—Mn1—N1180.0C13—C12—C10126.4 (2)
N1—C1—C2124.4 (2)C13—C12—H12A116.8
N1—C1—H1A117.8C10—C12—H12A116.8
C2—C1—H1A117.8C12—C13—C14123.6 (2)
C1—C2—C3120.1 (2)C12—C13—H13A118.2
C1—C2—H2A119.9C14—C13—H13A118.2
C3—C2—H2A119.9O1—C14—O2122.8 (2)
C4—C3—C2115.4 (2)O1—C14—C13120.0 (2)
C4—C3—C3ii122.0 (3)O2—C14—C13117.1 (2)
C2—C3—C3ii122.6 (2)C5—N1—C1115.2 (2)
C5—C4—C3120.5 (2)C5—N1—Mn1119.98 (15)
C5—C4—H4A119.7C1—N1—Mn1124.44 (15)
C3—C4—H4A119.7Mn1—O1W—H1WA132 (2)
N1—C5—C4124.3 (2)Mn1—O1W—H1WB119 (2)
N1—C5—H5A117.8H1WA—O1W—H1WB108 (2)
C4—C5—H5A117.8Mn1—O2W—H2WA133 (2)
O3—C6—C11117.6 (2)Mn1—O2W—H2WB119 (2)
O3—C6—C7122.8 (2)H2WA—O2W—H2WB108 (2)
C11—C6—C7119.6 (3)C6—O3—H3108 (2)
C8—C7—C6120.1 (3)H3WA—O3W—H3WB105 (2)
N1—C1—C2—C3−0.3 (4)C9—C10—C12—C13−171.1 (2)
C1—C2—C3—C41.7 (4)C10—C12—C13—C14177.8 (2)
C1—C2—C3—C3ii−178.3 (3)C12—C13—C14—O111.9 (4)
C2—C3—C4—C5−1.6 (4)C12—C13—C14—O2−166.8 (2)
C3ii—C3—C4—C5178.3 (3)C4—C5—N1—C11.2 (4)
C3—C4—C5—N10.2 (5)C4—C5—N1—Mn1−171.9 (3)
O3—C6—C7—C8178.0 (3)C2—C1—N1—C5−1.2 (4)
C11—C6—C7—C8−2.1 (4)C2—C1—N1—Mn1171.64 (19)
C6—C7—C8—C91.1 (4)O1W—Mn1—N1—C529.3 (2)
C7—C8—C9—C100.6 (4)O1Wi—Mn1—N1—C5−150.7 (2)
C8—C9—C10—C11−1.4 (3)O2Wi—Mn1—N1—C5119.6 (2)
C8—C9—C10—C12179.3 (2)O2W—Mn1—N1—C5−60.4 (2)
O3—C6—C11—C10−178.7 (2)O1W—Mn1—N1—C1−143.18 (19)
C7—C6—C11—C101.4 (4)O1Wi—Mn1—N1—C136.82 (19)
C9—C10—C11—C60.4 (4)O2Wi—Mn1—N1—C1−52.81 (19)
C12—C10—C11—C6179.6 (2)O2W—Mn1—N1—C1127.19 (19)
C11—C10—C12—C139.7 (4)

Symmetry codes: (i) −x+2, −y+1, −z−1; (ii) −x+3, −y+1, −z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O2iii0.83 (2)1.91 (2)2.738 (2)171 (3)
O1W—H1WA···O1iv0.83 (2)1.89 (2)2.719 (2)174 (3)
O2W—H2WA···O3Wv0.82 (2)2.02 (2)2.838 (3)176 (3)
O3W—H3WB···O2vi0.84 (2)1.90 (2)2.741 (2)174 (3)
O2W—H2WB···O1i0.83 (2)1.88 (2)2.702 (2)171 (3)

Symmetry codes: (iii) −x+1, −y+1, −z; (iv) −x+2, y−1/2, −z−1/2; (v) −x+1, y−1/2, −z−1/2; (vi) x−1, y, z; (i) −x+2, −y+1, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2846).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feng, X., Tang, Z. W., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Chin. J. Inorg. Chem.24, 1713–1717.
  • He, Y. H., Feng, X., Feng, Y. L., Sun, H. & Wen, Y. H. (2007). Chin. J. Inorg. Chem.23, 1805–1808.
  • Li, W. X., Feng, X., Feng, Y. L. & Wen, Y. H. (2008). Chin. J. Struct. Chem.27, 701–706.
  • Niu, C. Y., Wu, B. L., Zheng, X. F., Zhang, H. Y., Hou, H. W., Niu, Y. Y. & Li, Z. J. (2008). Cryst. Growth Des.8, 1566–1574.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xue, D. X., Lin, Y. Y., Cheng, X. N. & Cheng, X. M. (2007). Cryst. Growth Des.7, 1332–1336.
  • Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev.249, 545–565.
  • Zhang, L., Li, Z. J., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem.48, 6517–6525. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography