PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m924–m925.
Published online 2009 July 15. doi:  10.1107/S1600536809026907
PMCID: PMC2977146

catena-Poly[[[[N′-(4-cyano­benzyl­idene)nicotinohydrazide]silver(I)]-μ-[N′-4-cyano­benzyl­idene)nicotinohydrazide]] hexa­fluoridoarsenate]

Abstract

In the title compound, {[Ag(C14H10N4O)2]AsF6}n, the AgI ion is coordinated by two N atoms from two different pyridyl rings and one N atom from one carbonitrile group of three different N′-(4-cyano­benzyl­idene)nicotinohydrazide ligands in a distorted T-shaped geometry. The Ag—Ncarbonitrile bond distance is significant longer than those of Ag—Npyrid­yl. The bond angles around the AgI atom are also not in line with those in an ideal T-shaped geometry. One type of ligand acts as the bridge that connects AgI atoms into chains along [An external file that holds a picture, illustration, etc.
Object name is e-65-0m924-efi4.jpg01]. These chains are linked to each other via N—H(...)O hydrogen bonds and Ag(...)O inter­actions with an Ag(...)O separation of 2.869 (2) Å. In addition, the [AsF6] counter-anions are linked to the hydrazone groups through N—H(...)F hydrogen bonds. Four of the F atoms of the [AsF6] anion are disordered over two sets of sites with occupancies of 0.732 (9) and 0.268 (9).

Related literature

For background to silver coordination polymers, see: Dong et al. (2004 [triangle]); Niu et al. (2007 [triangle], 2008 [triangle]); Sumby & Hardie (2005 [triangle]); Vatsadze et al. (2004 [triangle]); Zheng et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m924-scheme1.jpg

Experimental

Crystal data

  • [Ag(C14H10N4O)2]AsF6
  • M r = 797.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m924-efi5.jpg
  • a = 22.3785 (15) Å
  • b = 13.7662 (9) Å
  • c = 19.8482 (14) Å
  • β = 99.948 (1)°
  • V = 6022.6 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.84 mm−1
  • T = 173 K
  • 0.52 × 0.12 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.448, T max = 0.823
  • 19207 measured reflections
  • 6896 independent reflections
  • 5017 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.105
  • S = 1.02
  • 6896 reflections
  • 460 parameters
  • 96 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026907/jh2084sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026907/jh2084Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

In the title compound, (I), the central silver ion is coordinated by two nitrogen atoms from two pyridyl rings of two different ligands (N1, N5) and one nitrogen atom from one carbonitrile group of another ligand [N4i. Symmetry codes: (i) x - 1/2, -y + 1/2, z + 1/2] forming a slightly distorted T-shaped coordination enviroment (Fig. 1). The bond angle of N1—Ag1—N5 is shorter than 180 ° and bond angles of N1—Ag1—N4i and N5—Ag1—N4i are larger than the right angle (Table 1). The N—Ag bond distances for pyridyl rings are 2.183 (3) and 2.204 (2) Å, which are smaller than N—Ag bond distance for carbonitrile group.

The compound 4-Cyanobenzylidene nicotinohydrazide act as the µ2-bridging ligands only by coordinations of pyridyl and carbonitrile nitrogen atoms. Each of these bridging ligands connects two silver atoms together by one pyridyl nitrogen atom N1 and one carbonitrile nitrogen atom N8 to form a one-dimensional chain along [-1,0,1] direction. The shortest distance between two silver atoms in one chain is about 16.28 Å. Meanwhile, the rest half of all ligands acting as terminal ligands are coordinated to silver atoms in chains only through pyridyl nitrogen atoms with the carbonitrile nitrogen atoms uncoordinating (Fig.2).

There are hydrogen bondings between uncoordinating groups, including pyridyl rings of terminal ligands and all hydrazone groups and counteranions. On one hand, counteranions AsF6- are attached to ligands of chains by N—H···F hydrogen bondings (Table 2). On the other hand, there are also N—H···O hydrogen bondings (Table 2) between two neighbouring antiparallel chains. In addition to these intermolecular hydrogen bondings, there are weak Ag···O interactions between one oxygen atom O1 of the terminal ligand in one chain and one silver atom in the neighbouring chain with the Ag···O separations of 2.876 (2) Å (Fig. 3).

Experimental

A solution of AgAsF6 (0.032 g, 0.1 mmol) in CH3OH (10 ml) was carefully layered on a CH3OH/CHCl3 solution (5 ml/10 ml) of 4-Cyanobenzylidene nicotinohydrazide (0.025 g, 0.1 mmol) in a straight glass tube. About ten days later, colourless single crystals suitable for X-ray analysis were obtained (yield about 30%). One very strong bonds at 699 cm-1 in the IR spectra was assigned to AsF6-.

Refinement

C-bound H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The N-bound H atoms were first introduced in calculated positions, and then thier positions and displacement parameters were refined with the N—H bond distance to 0.88 (2) Å. Four F atoms (F1—F4) of the hexafluoroarsenate anions are disordered over two positions, with maximum and minimum occupancies of 0.732 (9) and 0.268 (9), respectively. All As—F bond lengths were restrained to 1.70 (2) Å. Restraints of displacement parameters for six F or disordered F atoms were also performed. The final difference Fourier map had a max and min electron density of 0.63 and -0.47 e Å-3, respectively, but were otherwise featureless.

Figures

Fig. 1.
A view of the AgI coordination environment in the polymeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. [Symmetry codes: (i) x - 1/2, -y + 1/2, ...
Fig. 2.
A e llipsoid diagram at the 50% probability level showing the one-dimensional chain. All counteranions and H atoms have been omitted for clarity.
Fig. 3.
A diagram showing the intermolecular hydrogen bondings indicated by blue and red dashed lines and Ag···O interactions indicated by pink dashed lines.

Crystal data

[Ag(C14H10N4O)2]AsF6F(000) = 3152
Mr = 797.31Dx = 1.759 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5377 reflections
a = 22.3785 (15) Åθ = 2.1–27.5°
b = 13.7662 (9) ŵ = 1.84 mm1
c = 19.8482 (14) ÅT = 173 K
β = 99.948 (1)°Prism, colourless
V = 6022.6 (7) Å30.52 × 0.12 × 0.11 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer6896 independent reflections
Radiation source: fine-focus sealed tube5017 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −29→18
Tmin = 0.448, Tmax = 0.823k = −17→17
19207 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0526P)2 + 5.7237P] where P = (Fo2 + 2Fc2)/3
6896 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.63 e Å3
96 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.183850 (14)0.187891 (18)0.197856 (15)0.05547 (11)
N10.20655 (13)0.32823 (17)0.15519 (13)0.0404 (6)
N20.33194 (14)0.3474 (2)0.02005 (14)0.0471 (7)
N30.37007 (13)0.3480 (2)−0.02752 (14)0.0480 (7)
N40.61376 (15)0.2368 (3)−0.23488 (16)0.0667 (9)
N50.17227 (13)0.03059 (19)0.20139 (13)0.0435 (6)
N60.26690 (13)−0.16253 (19)0.09119 (14)0.0440 (6)
N70.30676 (13)−0.2188 (2)0.06251 (14)0.0452 (6)
N80.5343 (2)−0.4267 (3)−0.1374 (2)0.0990 (15)
O10.29409 (11)0.49652 (17)−0.01123 (12)0.0540 (6)
O20.25137 (12)−0.28036 (16)0.16611 (13)0.0569 (6)
C10.19143 (15)0.4121 (2)0.18267 (16)0.0426 (7)
H10.16690.40980.21720.051*
C20.21021 (17)0.5008 (2)0.16271 (17)0.0478 (8)
H20.19920.55850.18380.057*
C30.24503 (16)0.5056 (2)0.11201 (16)0.0448 (8)
H30.25820.56650.09750.054*
C40.26041 (14)0.4200 (2)0.08263 (15)0.0365 (7)
C50.24032 (15)0.3332 (2)0.10548 (16)0.0389 (7)
H50.25080.27450.08520.047*
C60.29680 (15)0.4257 (2)0.02645 (15)0.0400 (7)
C70.40093 (16)0.2709 (3)−0.02952 (17)0.0513 (8)
H70.39550.2179−0.00050.062*
C80.44496 (15)0.2627 (3)−0.07618 (16)0.0461 (8)
C90.46234 (17)0.3429 (3)−0.11026 (18)0.0499 (8)
H90.44400.4042−0.10550.060*
C100.50556 (18)0.3345 (3)−0.15064 (18)0.0528 (9)
H100.51780.3901−0.17320.063*
C110.53175 (15)0.2446 (3)−0.15883 (16)0.0476 (8)
C120.51410 (18)0.1635 (3)−0.1266 (2)0.0594 (10)
H120.53120.1018−0.13300.071*
C130.47112 (18)0.1734 (3)−0.0847 (2)0.0588 (10)
H130.45940.1181−0.06150.071*
C140.57804 (17)0.2385 (3)−0.20097 (18)0.0527 (9)
C150.13563 (17)−0.0091 (2)0.24079 (17)0.0491 (8)
H150.11170.03270.26330.059*
C160.13129 (18)−0.1077 (3)0.24988 (19)0.0538 (9)
H160.1051−0.13330.27840.065*
C170.16547 (17)−0.1682 (2)0.21708 (18)0.0473 (8)
H170.1633−0.23660.22280.057*
C180.20314 (14)−0.1297 (2)0.17564 (15)0.0370 (7)
C190.20477 (15)−0.0293 (2)0.16906 (15)0.0397 (7)
H190.2301−0.00210.14020.048*
C200.24264 (15)−0.1984 (2)0.14389 (16)0.0398 (7)
C210.33262 (17)−0.1765 (2)0.01809 (18)0.0488 (8)
H210.3241−0.11020.00720.059*
C220.37552 (16)−0.2300 (3)−0.01634 (17)0.0473 (8)
C230.38639 (17)−0.3282 (3)−0.00388 (19)0.0507 (8)
H230.3654−0.36140.02690.061*
C240.42693 (18)−0.3782 (3)−0.03525 (19)0.0552 (9)
H240.4341−0.4453−0.02600.066*
C250.45761 (17)−0.3300 (3)−0.0808 (2)0.0556 (9)
C260.44726 (19)−0.2317 (3)−0.0942 (2)0.0625 (10)
H260.4682−0.1987−0.12510.075*
C270.40629 (19)−0.1822 (3)−0.0622 (2)0.0587 (10)
H270.3990−0.1152−0.07150.070*
C280.5002 (2)−0.3825 (3)−0.1133 (2)0.0700 (12)
As10.377276 (19)0.09939 (3)0.14799 (2)0.05697 (13)
F50.38907 (15)0.21973 (18)0.13618 (16)0.1020 (9)
F60.36110 (16)−0.01902 (19)0.1542 (2)0.1292 (13)
H280.3375 (17)0.306 (2)0.0537 (14)0.056 (11)*
H290.2555 (17)−0.1086 (19)0.0702 (18)0.061 (12)*
F10.3247 (3)0.1084 (5)0.0751 (3)0.142 (3)0.732 (9)
F20.3208 (3)0.1242 (3)0.1925 (3)0.111 (2)0.732 (9)
F30.4252 (4)0.0990 (7)0.2174 (5)0.203 (4)0.732 (9)
F40.4308 (3)0.0776 (4)0.1007 (5)0.135 (3)0.732 (9)
F1'0.3034 (4)0.1259 (9)0.1417 (10)0.111 (5)0.268 (9)
F2'0.3871 (8)0.1196 (8)0.2320 (4)0.095 (5)0.268 (9)
F3'0.4516 (4)0.0732 (7)0.1563 (8)0.084 (4)0.268 (9)
F4'0.3710 (9)0.0775 (9)0.0641 (5)0.116 (5)0.268 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0725 (2)0.03016 (14)0.0723 (2)0.00011 (12)0.03658 (16)0.00469 (11)
N10.0519 (16)0.0292 (13)0.0455 (15)−0.0014 (11)0.0234 (13)0.0001 (10)
N20.0587 (18)0.0446 (15)0.0450 (16)0.0072 (14)0.0290 (14)0.0084 (13)
N30.0510 (17)0.0533 (17)0.0455 (15)0.0038 (14)0.0248 (13)0.0021 (13)
N40.063 (2)0.081 (2)0.066 (2)0.0065 (18)0.0362 (18)0.0071 (18)
N50.0556 (17)0.0335 (14)0.0455 (15)0.0012 (12)0.0209 (13)0.0030 (11)
N60.0540 (17)0.0341 (14)0.0469 (16)0.0066 (12)0.0175 (14)0.0016 (12)
N70.0505 (17)0.0408 (14)0.0466 (15)0.0024 (13)0.0150 (13)−0.0058 (12)
N80.104 (3)0.080 (3)0.134 (4)−0.010 (2)0.081 (3)−0.022 (3)
O10.0690 (17)0.0442 (13)0.0556 (14)0.0016 (12)0.0298 (13)0.0130 (11)
O20.0758 (18)0.0302 (11)0.0705 (16)0.0041 (11)0.0285 (14)0.0048 (11)
C10.0487 (19)0.0373 (17)0.0474 (18)0.0036 (14)0.0241 (15)0.0002 (13)
C20.066 (2)0.0305 (15)0.0521 (19)0.0043 (15)0.0249 (17)−0.0060 (14)
C30.058 (2)0.0293 (15)0.0505 (19)−0.0016 (14)0.0196 (16)0.0020 (13)
C40.0427 (17)0.0330 (15)0.0356 (15)−0.0004 (13)0.0119 (13)0.0004 (12)
C50.0505 (19)0.0277 (14)0.0429 (17)−0.0005 (13)0.0202 (15)−0.0033 (12)
C60.0471 (19)0.0370 (16)0.0393 (16)−0.0033 (14)0.0169 (14)−0.0004 (13)
C70.054 (2)0.055 (2)0.050 (2)0.0019 (17)0.0259 (17)0.0060 (16)
C80.0439 (19)0.056 (2)0.0419 (17)0.0036 (16)0.0161 (15)0.0004 (15)
C90.057 (2)0.0452 (18)0.053 (2)0.0041 (16)0.0240 (17)−0.0017 (15)
C100.062 (2)0.050 (2)0.052 (2)−0.0039 (17)0.0267 (18)0.0020 (16)
C110.0433 (19)0.059 (2)0.0446 (18)0.0019 (16)0.0179 (15)−0.0010 (15)
C120.060 (2)0.055 (2)0.070 (2)0.0133 (18)0.031 (2)0.0047 (18)
C130.062 (2)0.053 (2)0.070 (2)0.0099 (18)0.034 (2)0.0157 (18)
C140.052 (2)0.060 (2)0.050 (2)0.0052 (17)0.0173 (17)0.0032 (17)
C150.059 (2)0.0436 (18)0.0493 (19)0.0054 (16)0.0234 (17)0.0022 (15)
C160.060 (2)0.048 (2)0.062 (2)−0.0014 (17)0.0319 (19)0.0104 (16)
C170.056 (2)0.0322 (16)0.057 (2)−0.0058 (14)0.0179 (17)0.0073 (14)
C180.0437 (18)0.0300 (14)0.0378 (16)−0.0026 (13)0.0086 (14)0.0019 (12)
C190.0498 (19)0.0324 (15)0.0399 (16)−0.0027 (13)0.0164 (14)0.0021 (12)
C200.0467 (19)0.0278 (15)0.0457 (17)−0.0014 (13)0.0099 (15)−0.0021 (12)
C210.055 (2)0.0429 (18)0.0496 (19)0.0016 (16)0.0121 (17)−0.0012 (15)
C220.0473 (19)0.0509 (19)0.0449 (18)−0.0051 (16)0.0113 (15)−0.0066 (15)
C230.051 (2)0.052 (2)0.052 (2)−0.0068 (16)0.0190 (17)−0.0040 (16)
C240.057 (2)0.051 (2)0.062 (2)−0.0013 (17)0.0216 (18)−0.0078 (17)
C250.048 (2)0.063 (2)0.060 (2)−0.0091 (18)0.0211 (18)−0.0159 (18)
C260.067 (3)0.067 (3)0.060 (2)−0.013 (2)0.029 (2)−0.0030 (19)
C270.065 (3)0.051 (2)0.064 (2)−0.0047 (18)0.022 (2)−0.0003 (17)
C280.066 (3)0.068 (3)0.084 (3)−0.014 (2)0.037 (2)−0.014 (2)
As10.0619 (3)0.03366 (19)0.0799 (3)−0.00267 (16)0.0248 (2)0.00097 (16)
F50.140 (3)0.0476 (14)0.123 (2)−0.0164 (15)0.034 (2)0.0104 (14)
F60.139 (3)0.0433 (14)0.224 (4)−0.0122 (16)0.086 (3)−0.0032 (19)
F10.126 (5)0.177 (6)0.109 (4)−0.018 (4)−0.025 (3)−0.016 (4)
F20.147 (5)0.084 (3)0.127 (4)−0.013 (3)0.092 (4)−0.024 (3)
F30.152 (6)0.254 (8)0.177 (7)−0.023 (6)−0.046 (5)0.065 (6)
F40.125 (5)0.092 (3)0.219 (7)0.009 (3)0.115 (5)0.000 (4)
F1'0.075 (6)0.096 (7)0.162 (11)0.008 (6)0.021 (7)0.017 (8)
F2'0.161 (10)0.079 (6)0.054 (5)0.020 (6)0.043 (6)−0.004 (4)
F3'0.055 (5)0.066 (6)0.132 (9)0.006 (4)0.021 (6)0.000 (6)
F4'0.161 (11)0.093 (7)0.085 (7)−0.017 (7)−0.003 (7)−0.018 (6)

Geometric parameters (Å, °)

Ag1—N52.183 (3)C11—C121.378 (5)
Ag1—N12.204 (2)C11—C141.442 (4)
Ag1—N4i2.458 (3)C12—C131.382 (5)
N1—C51.344 (4)C12—H120.9500
N1—C11.345 (4)C13—H130.9500
N2—C61.353 (4)C15—C161.374 (5)
N2—N31.378 (3)C15—H150.9500
N2—H280.868 (19)C16—C171.370 (5)
N3—C71.271 (5)C16—H160.9500
N4—C141.131 (4)C17—C181.382 (4)
N4—Ag1ii2.458 (3)C17—H170.9500
N5—C191.335 (4)C18—C191.389 (4)
N5—C151.343 (4)C18—C201.506 (4)
N6—C201.353 (4)C19—H190.9500
N6—N71.376 (4)C21—C221.468 (5)
N6—H290.868 (19)C21—H210.9500
N7—C211.275 (4)C22—C231.389 (5)
N8—C281.144 (5)C22—C271.397 (5)
O1—C61.224 (4)C23—C241.371 (5)
O2—C201.214 (4)C23—H230.9500
C1—C21.372 (4)C24—C251.394 (5)
C1—H10.9500C24—H240.9500
C2—C31.377 (4)C25—C261.391 (6)
C2—H20.9500C25—C281.436 (5)
C3—C41.384 (4)C26—C271.381 (5)
C3—H30.9500C26—H260.9500
C4—C51.381 (4)C27—H270.9500
C4—C61.492 (4)As1—F31.593 (6)
C5—H50.9500As1—F2'1.667 (8)
C7—C81.468 (4)As1—F41.671 (4)
C7—H70.9500As1—F4'1.674 (9)
C8—C131.384 (5)As1—F1'1.675 (10)
C8—C91.386 (5)As1—F61.679 (3)
C9—C101.363 (5)As1—F3'1.682 (8)
C9—H90.9500As1—F21.696 (4)
C10—C111.392 (5)As1—F51.700 (2)
C10—H100.9500As1—F11.704 (5)
N5—Ag1—N1156.68 (9)N5—C19—C18123.0 (3)
N5—Ag1—N4i108.09 (11)N5—C19—H19118.5
N1—Ag1—N4i92.87 (11)C18—C19—H19118.5
C5—N1—C1117.8 (3)O2—C20—N6124.0 (3)
C5—N1—Ag1121.53 (19)O2—C20—C18120.1 (3)
C1—N1—Ag1120.4 (2)N6—C20—C18115.9 (3)
C6—N2—N3119.9 (3)N7—C21—C22120.3 (3)
C6—N2—H28117 (2)N7—C21—H21119.8
N3—N2—H28120 (3)C22—C21—H21119.8
C7—N3—N2114.9 (3)C23—C22—C27118.9 (3)
C14—N4—Ag1ii153.9 (3)C23—C22—C21120.9 (3)
C19—N5—C15117.8 (3)C27—C22—C21120.2 (3)
C19—N5—Ag1121.3 (2)C24—C23—C22121.2 (3)
C15—N5—Ag1120.7 (2)C24—C23—H23119.4
C20—N6—N7119.3 (3)C22—C23—H23119.4
C20—N6—H29124 (3)C23—C24—C25119.6 (4)
N7—N6—H29116 (3)C23—C24—H24120.2
C21—N7—N6115.7 (3)C25—C24—H24120.2
N1—C1—C2122.4 (3)C26—C25—C24120.2 (3)
N1—C1—H1118.8C26—C25—C28120.3 (4)
C2—C1—H1118.8C24—C25—C28119.5 (4)
C1—C2—C3119.6 (3)C27—C26—C25119.6 (4)
C1—C2—H2120.2C27—C26—H26120.2
C3—C2—H2120.2C25—C26—H26120.2
C2—C3—C4118.7 (3)C26—C27—C22120.6 (4)
C2—C3—H3120.7C26—C27—H27119.7
C4—C3—H3120.7C22—C27—H27119.7
C5—C4—C3118.7 (3)N8—C28—C25177.5 (5)
C5—C4—C6122.8 (3)F3—As1—F492.5 (4)
C3—C4—C6118.5 (3)F2'—As1—F4127.4 (6)
N1—C5—C4122.8 (3)F3—As1—F4'142.0 (7)
N1—C5—H5118.6F2'—As1—F4'177.2 (7)
C4—C5—H5118.6F4—As1—F4'49.8 (6)
O1—C6—N2123.1 (3)F3—As1—F1'125.0 (7)
O1—C6—C4121.5 (3)F2'—As1—F1'89.8 (6)
N2—C6—C4115.4 (3)F4—As1—F1'142.2 (6)
N3—C7—C8120.7 (3)F4'—As1—F1'93.0 (7)
N3—C7—H7119.6F3—As1—F693.1 (3)
C8—C7—H7119.6F2'—As1—F694.7 (4)
C13—C8—C9119.2 (3)F4—As1—F692.9 (2)
C13—C8—C7119.3 (3)F4'—As1—F685.2 (4)
C9—C8—C7121.5 (3)F1'—As1—F689.7 (4)
C10—C9—C8120.5 (3)F3—As1—F3'53.7 (5)
C10—C9—H9119.8F2'—As1—F3'88.9 (6)
C8—C9—H9119.8F4'—As1—F3'88.3 (6)
C9—C10—C11120.0 (3)F1'—As1—F3'178.7 (7)
C9—C10—H10120.0F6—As1—F3'90.4 (4)
C11—C10—H10120.0F3—As1—F290.1 (4)
C12—C11—C10120.4 (3)F2'—As1—F255.1 (5)
C12—C11—C14121.0 (3)F4—As1—F2177.1 (3)
C10—C11—C14118.6 (3)F4'—As1—F2127.7 (6)
C11—C12—C13119.0 (3)F6—As1—F288.16 (19)
C11—C12—H12120.5F3'—As1—F2143.6 (5)
C13—C12—H12120.5F3—As1—F591.5 (3)
C12—C13—C8120.9 (3)F2'—As1—F588.8 (4)
C12—C13—H13119.5F4—As1—F587.4 (2)
C8—C13—H13119.5F4'—As1—F591.5 (4)
N4—C14—C11177.6 (4)F1'—As1—F587.3 (4)
N5—C15—C16122.9 (3)F6—As1—F5175.38 (19)
N5—C15—H15118.6F3'—As1—F592.8 (4)
C16—C15—H15118.6F2—As1—F591.32 (19)
C17—C16—C15118.7 (3)F3—As1—F1175.8 (4)
C17—C16—H16120.6F2'—As1—F1142.2 (5)
C15—C16—H16120.6F4—As1—F189.6 (3)
C16—C17—C18119.8 (3)F1'—As1—F152.7 (6)
C16—C17—H17120.1F6—As1—F190.4 (3)
C18—C17—H17120.1F3'—As1—F1128.6 (5)
C17—C18—C19117.8 (3)F2—As1—F187.7 (3)
C17—C18—C20118.0 (3)F5—As1—F185.0 (2)
C19—C18—C20124.0 (3)
N5—Ag1—N1—C5−17.9 (4)C10—C11—C12—C13−1.6 (6)
N4i—Ag1—N1—C5−172.2 (3)C14—C11—C12—C13177.7 (4)
N5—Ag1—N1—C1168.2 (3)C11—C12—C13—C81.4 (6)
N4i—Ag1—N1—C113.8 (3)C9—C8—C13—C120.0 (6)
C6—N2—N3—C7−179.8 (3)C7—C8—C13—C12−178.0 (4)
N1—Ag1—N5—C1927.0 (4)C19—N5—C15—C161.2 (5)
N4i—Ag1—N5—C19180.0 (2)Ag1—N5—C15—C16−173.6 (3)
N1—Ag1—N5—C15−158.4 (3)N5—C15—C16—C17−0.4 (6)
N4i—Ag1—N5—C15−5.4 (3)C15—C16—C17—C18−0.3 (6)
C20—N6—N7—C21−172.9 (3)C16—C17—C18—C190.1 (5)
C5—N1—C1—C2−1.3 (5)C16—C17—C18—C20176.5 (3)
Ag1—N1—C1—C2172.9 (3)C15—N5—C19—C18−1.4 (5)
N1—C1—C2—C31.1 (6)Ag1—N5—C19—C18173.4 (2)
C1—C2—C3—C4−0.3 (5)C17—C18—C19—N50.7 (5)
C2—C3—C4—C5−0.1 (5)C20—C18—C19—N5−175.4 (3)
C2—C3—C4—C6178.4 (3)N7—N6—C20—O2−3.8 (5)
C1—N1—C5—C40.9 (5)N7—N6—C20—C18175.7 (3)
Ag1—N1—C5—C4−173.2 (2)C17—C18—C20—O2−16.5 (5)
C3—C4—C5—N1−0.2 (5)C19—C18—C20—O2159.6 (3)
C6—C4—C5—N1−178.7 (3)C17—C18—C20—N6164.0 (3)
N3—N2—C6—O14.6 (5)C19—C18—C20—N6−19.9 (5)
N3—N2—C6—C4−176.0 (3)N6—N7—C21—C22−179.3 (3)
C5—C4—C6—O1150.3 (3)N7—C21—C22—C233.3 (5)
C3—C4—C6—O1−28.2 (5)N7—C21—C22—C27−176.5 (3)
C5—C4—C6—N2−29.0 (5)C27—C22—C23—C240.6 (6)
C3—C4—C6—N2152.4 (3)C21—C22—C23—C24−179.2 (3)
N2—N3—C7—C8−177.9 (3)C22—C23—C24—C25−0.4 (6)
N3—C7—C8—C13−170.4 (4)C23—C24—C25—C260.2 (6)
N3—C7—C8—C911.7 (6)C23—C24—C25—C28179.8 (4)
C13—C8—C9—C10−1.3 (6)C24—C25—C26—C27−0.2 (6)
C7—C8—C9—C10176.7 (4)C28—C25—C26—C27−179.7 (4)
C8—C9—C10—C111.2 (6)C25—C26—C27—C220.4 (6)
C9—C10—C11—C120.3 (6)C23—C22—C27—C26−0.6 (6)
C9—C10—C11—C14−179.0 (4)C21—C22—C27—C26179.2 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N6—H29···O1iii0.87 (2)2.13 (2)2.976 (4)165 (4)
N2—H28···F50.87 (2)2.19 (2)3.003 (4)157 (3)

Symmetry codes: (iii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2084).

References

  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Dong, Y.-B., Zhao, X. & Huang, R.-Q. (2004). Inorg. Chem.43, 5603–5612. [PubMed]
  • Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). Dalton Trans. pp. 5710–5713. [PubMed]
  • Niu, C.-Y., Zheng, X.-F., Bai, L.-L., Wu, X.-L. & Kou, C.-H. (2008). Acta Cryst. C64, m305–m307. [PubMed]
  • Sheldrick, G. M. (1996). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed.44, 6395–6399. [PubMed]
  • Vatsadze, S. Z., Kovalkina, M. A., Sviridenkova, N. V., Zyk, N. V., Churakov, A. V., Kuz’mina, L. G. & Howard, J. A. K. (2004). CrystEngComm, 6, 112–115.
  • Zheng, Y., Du, M., Li, J.-R., Zhang, R.-H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509–1514.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography