PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1738–o1739.
Published online 2009 July 1. doi:  10.1107/S1600536809022995
PMCID: PMC2977143

Propiverinium picrate

Abstract

The title compound [systematic name: 4-(2,2-diphenyl-2-prop­oxyacet­oxy)-1-methyl­piperidin-1-ium picrate], C23H30NO3 +·C6H2N3O7 , crystallizes as a salt with one cation–anion (propiverinium picrate) pair in the asymmetric unit. A significant number of conformational changes are observed between the crystalline environment of this cation–anion salt and that of a density functional theory (DFT) calculation of the geometry-optimized structure. The angle between the dihedral planes of the two benzyl rings in the propiverinium cation increases by 14.4 (0)° from that of the crystalline environment. The dihedral angles between the mean planes of each of the benzyl rings and the mean plane of the piperidine increase by 2.0 (8) and 12.3 (5)°. The angles between the mean plane of the acetate group and the mean planes of the inter­connected piperidine group and the two benzyl rings decrease by 0.2 (1), 7.4 (6) and 3.2 (2)°, respectively. The mean plane of the phenolate group in the anion changes by +22.6 (9), +22.1 (1) and −2.8 (6)° from the mean planes of the piperidine and benzyl rings in the cation, respectively. In the crystal, a bifurcated N—H(...)(O,O) hydrogen bond and a weak C—H(...)π ring inter­action help to establish the packing. The two O atoms of the p-NO2 group are disordered with occupancies 0.825 (10):0.175 (10).

Related literature

For related structures, see: Bindya et al. (2007 [triangle]); Harrison, Bindya et al. (2007 [triangle]); Harrison, Sreevidya et al. (2007 [triangle]); Swamy et al. (2007 [triangle]) Yathirajan et al. (2007 [triangle]). For background, see: Chapple et al. (2008 [triangle]); Jünemann et al. (2006 [triangle]); Madersbacher & Gramatté, (2006 [triangle]); Matsushima et al. (1997 [triangle]); Noguchi & Masuda, (1998 [triangle]); Okada & Sengodu, (1998 [triangle]); Rong et al. (1999 [triangle]). For density functional theory (DFT), see: Becke (1988 [triangle], 1993 [triangle]); Frisch et al. (2004 [triangle]); Hehre et al. (1986 [triangle]); Lee et al. (1988 [triangle]); Schmidt & Polik (2007 [triangle]); Szumma et al. (2000 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1738-scheme1.jpg

Experimental

Crystal data

  • C23H30NO3 +·C6H2N3O7
  • M r = 596.59
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1738-efi1.jpg
  • a = 8.9379 (4) Å
  • b = 9.2885 (4) Å
  • c = 18.0750 (7) Å
  • α = 97.652 (3)°
  • β = 97.630 (3)°
  • γ = 104.301 (4)°
  • V = 1419.54 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 110 K
  • 0.55 × 0.35 × 0.27 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.910, T max = 0.972
  • 18429 measured reflections
  • 9328 independent reflections
  • 6353 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.126
  • S = 1.03
  • 9328 reflections
  • 397 parameters
  • 24 restraints
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro (Oxford Diffraction, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809022995/at2814sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809022995/at2814Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

The title compound,C29H32N4O10, crystallizes as a salt with one cation–anion (propiverinium picrate) pair [C23H30O3N+.C6H2N3O7-] in the asymmetric unit. Propiverine hydrochloride, [chemical name: (1-methylpiperidin-4-yl) 2,2-diphenyl-2-propoxyacetate hydrochloride], originally developed by Schering-Plough (Okada & Sengodu, 1998; Noguchi & Masuda, 1998), is widely used in the treatment of urinary incontinence (Matsushima et al. 1997; Rong et al. 1999). Propiverine is an anticholinergic drug used for the treatment of urinary urgency, frequency and urge incontinence, all symptoms of overactive bladder syndrome. A modified release preparation is also available, taken once daily. Propiverine, a benzylic acid derivative, has been used as a urospasmolytic since 1981. It is unique in having both anticholinergic and calcium channel blocking effects. The former effects are known to suppress neurogenic detrusor contraction while the latter have a direct spasmolytic effect on the bladder. Experiments on isolated human urinary bladder strips using acetylcholine, calcium and potassium chloride and electrical fields as stimuli for contraction (Jünemann et al. 2006), have shown that both propiverine and tolterodine have a greater maximum inhibitory effect on bladder contraction than either atropine or oxybutynin. In the case of propiverine, calcium channel blocking effects are believed to contribute to its enhanced spasmolytic action on bladder smooth muscle (Chapple et al. 2008; Madersbacher & Gramatté, 2006). The crystal structures of amitriptylinium picrate (Bindya et al. 2007), mepazinium picrate (Yathirajan et al. 2007), imipraminium picrate (Harrison, Bindya et al. 2007), nevirapinium picrate (Harrison, Sreevidya et al. 2007) and desipraminium picrate (Swamy et al. 2007) have been reported. In continuation of our work on the picrate salts of compounds of pharmaceutical importance, this paper reports a crystal structure of the title compound, (I), C23H30O3N+.C6H2N3O7-, a molecular salt arising from the reaction of propiverine and picric acid.

The title compound,C29H32N4O10, crystallizes as a salt with two cation (propiverinium)-anion (picrate) pairs [C23H30O3N+.C6H2N3O7-] in the asymmetric unit cell. The propiverinium cation contains two benzyl rings whose dihedral planes are separated by 72.5 (8)° and a 6-membered piperidine group which adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and [var phi] of 0.564 (4) Å, 177.0 (6)° and 177.084 (5)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. The dihedral angles between the mean planes of each of these benzyl rings and the mean plane of the piperidine group are 0.5 (6)° and 72.8 (8)°, respectively. The piperidine group and two benzyl rings are connected by an acetate group whose mean plane makes an angle of 83.8 (8)°, 78.5 (5)° and 84.3 (1)°, with the mean planes of the piperidine group and two benzyl rings, respectively. In the picrate anion, the mean plane of two o-NO2 groups are twisted by 15.6 (6)° and 38.5 (1)° with respect to the mean plane of the 6-membered benzyl ring (Fig. 2). The two oxygen atoms in the p-NO2 group are disordered with the major components [O(4 A A) (0.825 (10)) and O5AA (0.825 (10))] making a dihedral angle of 8.9 (7)° with the mean plane of the benzyl ring. The difference in the twist angles of the mean planes of the two o-NO2 groups can be attributed to an intermolecular hydrogen bonded interaction between the piperidine group of the propiverinium cation with one of these groups, O2A—N1A—O3A, on the picrate anion, in which the O2A atom forms an intermolecular "side" hydrogen bond [N1B—H1BD···O2A] with N1B from the piperidine group (Fig. 3, Table 1). N1B also forms an intermolecular hydrogen bond with the phenolate oxygen anion, O1A, making it a two-centered hydrogen bond. This observation, when NO2 groups in picrate related salts form "side" hydrogen bonds resulting in a torsion angle increase of several degrees, is also seen in other similar picrate-related salts (Szumma et al. 2000). The difference in angles between the mean planes of the o-O2A—N2A—O3A and o-O6A—N6—O7A groups in (I) with that of the phenolate group of the picrate anion is 22.8 (5)°, a direct result of the observed N1B—H1B···O2A hydrogen bond. Crystal packing is also influenced by π-ring C—H···Cg intermolecular interactions with the piperidine group [C20B—H6A···Cg2: H···Cg = 2.89 Å; X—H···Cg = 173°; X···Cg = 3.7553 Å; x, y, z, where Cg2 = C5B/C6B/C7B/C8B/C9B/C10B] in the unit cell (Fig. 4).

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the C23H30O3N+, C6H2N3O7- cation-anion pair of the title molecule, (I), with the GAUSSIAN03 program package (Frisch et al. 2004) employing the B3-LYP (Becke three parameter Lee-Yang-Parr) exchange correlation functional, which combines the hybrid exchange functional of Becke (Becke, 1988, 1993) with the gradient-correlation functional of Lee, Yang and Parr (Lee et al. 1988) and the 3–21 G basis set (Hehre et al., 1986). Starting geometries were taken from X-ray refinement data. The angle between the dihedral planes of the two benzyl rings in the propiverinium cation becomes 86.9 (8)°, an increase of 14.4 (0)° from that of the crystalline environment. The dihedral angles between the mean planes of each of the benzyl rings and the mean plane of the piperidine group become 2.6 (4)° and 85.2 (3)°, an increase of 2.0 (8)° and 12.3 (5)°, respectively. The angles between the mean plane of the acetate group and the mean planes of the piperidine group and two benzyl rings become 83.6 (7)° and 61.0 (9)°, 81.09°, respectively, only slightly changed from that in the crystal. A comparison of the mean planes of the phenolate group in the anion to the mean planes of the piperidine and benzyl rings in the propiverinium cation also show similar changes between the crystal and the DFT theoretical calculation [i.e. Phenolate-piperidine = 61.2 (1)°, crystal, versus 83.9 (0)° DFT; Phenolate-Benzyl = 61.2 (3)°, 33.9 (7)°, crystal versus 83.3 (4)°, 31.1 (1)°, DFT].

In conclusion, the significant number of conformational changes that are observed between the crystalline environment of this cation (propiverinium)-anion (picrate) salt and that of a density functional theory calculation of the geometry optimized structure support the effects of intermolecular hydrogen bonding interactions and π-ring C—H···Cg intermolecular interactions with the piperidine group as providing the major influence on packing effects in the crystalline environment of the title compound, propiverinium picrate,C23H30O3N+.C6H2N3O7-.

Experimental

Propiverine hydrochloride (4.1 g, 0.01 mol) in 25 ml of methanol and picric acid (4.8 g, 0.01 mol) in 25 ml of methanol were mixed and stirred in a beaker at 318 K for two hours. The mixture was kept aside for 3 days at room temperature. The separated bright yellow salt was filtered, washed thoroughly with chloroform and dried in vacuum desiccator over phosphorous pentoxide. The salt was recrystallized from acetonitrile [m.p: 403–406 K]) by slow evaporation.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.93, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.172–1.49Ueq(C,N).

Figures

Fig. 1.
Molecular structure of the C23H30O3N+ cation showing atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Molecular structure of the C6H2N3O7- anion showing atom labeling scheme and 50% probability displacement ellipsoids. Both components of the disordered nitro group are displayed [O4AA(0.825 (10))-N2A—O5AA(0.825 (10)) & O4AB(0.175 (10))-N2A—O5AB ...
Fig. 3.
Molecular structure of the C23H30O3N+, C6H2N3O7- cation-anion pair showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate N1B—H1BD···O1A and N1B—H1BD···O1B ...
Fig. 4.
Packing diagram of the title compound, (I), viewed down the a axis. Dashed lines indicate intermolecular N1B—H1BD···O1A & N1B—H1BD···O2A hydrogen bond interactions which produces ...

Crystal data

C23H30NO3+·C6H2N3O7Z = 2
Mr = 596.59F(000) = 628
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9379 (4) ÅCell parameters from 8020 reflections
b = 9.2885 (4) Åθ = 4.7–32.6°
c = 18.0750 (7) ŵ = 0.11 mm1
α = 97.652 (3)°T = 110 K
β = 97.630 (3)°Prism, pale yellow
γ = 104.301 (4)°0.55 × 0.35 × 0.27 mm
V = 1419.54 (10) Å3

Data collection

Oxford Diffraction Gemini R CCD diffractometer9328 independent reflections
Radiation source: fine-focus sealed tube6353 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 4.8°
[var phi] and ω scansh = −10→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −12→14
Tmin = 0.910, Tmax = 0.972l = −25→26
18429 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0682P)2] where P = (Fo2 + 2Fc2)/3
9328 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.39 e Å3
24 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O1A0.10752 (10)0.23733 (10)0.53343 (5)0.02465 (19)
O2A0.12422 (13)0.08237 (12)0.64704 (6)0.0414 (3)
O3A0.14903 (16)−0.14166 (12)0.61794 (7)0.0549 (3)
O4AA0.4251 (3)−0.2570 (3)0.4160 (2)0.0556 (8)0.825 (10)
O5AA0.4834 (4)−0.0983 (5)0.33859 (12)0.0463 (8)0.825 (10)
O4AB0.4136 (17)−0.2763 (15)0.4447 (10)0.0556 (8)0.175 (10)
O5AB0.4388 (16)−0.1576 (18)0.3475 (7)0.0463 (8)0.175 (10)
O6A0.19712 (11)0.28535 (11)0.33215 (5)0.0302 (2)
O7A0.24781 (13)0.42205 (10)0.44357 (5)0.0365 (2)
N1A0.15738 (14)−0.01478 (13)0.60401 (7)0.0341 (3)
N2A0.41627 (16)−0.14450 (15)0.39320 (9)0.0470 (4)
N3A0.22611 (12)0.30132 (12)0.40164 (6)0.0234 (2)
C1A0.18060 (13)0.15168 (13)0.50522 (6)0.0197 (2)
C2A0.20815 (15)0.02039 (13)0.53354 (7)0.0251 (3)
C3A0.27856 (16)−0.07744 (14)0.49621 (8)0.0318 (3)
H3AA0.2900−0.16450.51610.038*
C4A0.33233 (15)−0.04861 (14)0.42997 (8)0.0301 (3)
C5A0.31226 (14)0.07552 (14)0.39838 (7)0.0245 (3)
H5AA0.34720.09380.35220.029*
C6A0.24091 (14)0.17030 (13)0.43558 (6)0.0193 (2)
O1B0.60822 (9)0.83673 (9)0.95805 (4)0.01743 (16)
O2B0.65404 (10)0.61445 (9)0.85595 (5)0.02139 (18)
O3B0.49768 (9)0.66911 (8)0.76153 (4)0.01681 (16)
N1B0.14290 (11)0.41809 (11)0.66309 (5)0.0195 (2)
H1BD0.14290.33070.63130.023*
C1B0.7672 (2)0.65985 (16)1.04798 (8)0.0374 (3)
H1BA0.65370.61941.03170.056*
H1BB0.79850.63051.09660.056*
H1BC0.82150.61931.00990.056*
C2B0.81046 (16)0.83003 (14)1.05690 (7)0.0266 (3)
H2BA0.92370.87031.07760.032*
H2BB0.75220.86961.09410.032*
C3B0.77559 (13)0.88685 (13)0.98354 (6)0.0199 (2)
H3BA0.81180.99840.99190.024*
H3BB0.83030.84610.94500.024*
C4B0.55382 (13)0.83591 (12)0.88023 (6)0.0144 (2)
C5B0.37558 (13)0.80952 (12)0.87150 (6)0.0161 (2)
C6B0.29341 (14)0.72390 (13)0.91802 (6)0.0210 (2)
H6BA0.34880.69010.95780.025*
C7B0.13033 (15)0.68740 (15)0.90661 (7)0.0270 (3)
H7BA0.07510.62950.93890.032*
C8B0.04823 (15)0.73485 (14)0.84858 (7)0.0273 (3)
H8BA−0.06300.70920.84080.033*
C9B0.12932 (14)0.82027 (14)0.80174 (7)0.0252 (3)
H9BA0.07340.85310.76180.030*
C10B0.29213 (14)0.85778 (13)0.81321 (6)0.0195 (2)
H10A0.34700.91670.78120.023*
C11B0.63706 (13)0.98164 (12)0.85584 (6)0.0154 (2)
C12B0.60946 (14)1.11664 (13)0.88757 (6)0.0211 (2)
H12A0.53431.11460.92020.025*
C13B0.69100 (16)1.25303 (13)0.87166 (7)0.0256 (3)
H13A0.67111.34400.89320.031*
C14B0.80181 (16)1.25757 (14)0.82429 (7)0.0272 (3)
H14A0.85731.35130.81330.033*
C15B0.83122 (15)1.12444 (14)0.79297 (7)0.0239 (2)
H15A0.90751.12700.76090.029*
C16B0.74833 (13)0.98724 (12)0.80886 (6)0.0178 (2)
H16A0.76830.89640.78720.021*
C17B0.57857 (12)0.69440 (12)0.83240 (6)0.0154 (2)
C18B0.48344 (13)0.52459 (12)0.71359 (6)0.0174 (2)
H18A0.58940.50820.71140.021*
C19B0.38094 (14)0.39610 (12)0.74338 (7)0.0199 (2)
H19A0.37840.29900.71240.024*
H19B0.42770.39590.79620.024*
C20B0.21450 (14)0.40916 (13)0.74143 (6)0.0208 (2)
H20A0.15060.32040.75830.025*
H20B0.21530.50060.77670.025*
C21B−0.02218 (15)0.42444 (16)0.65909 (8)0.0303 (3)
H21A−0.02580.51570.69210.045*
H21B−0.08330.33530.67580.045*
H21C−0.06650.42640.60680.045*
C22B0.23950 (15)0.54977 (13)0.63493 (7)0.0216 (2)
H22A0.24110.64490.66750.026*
H22B0.19150.55220.58270.026*
C23B0.40595 (14)0.53774 (13)0.63573 (6)0.0208 (2)
H23A0.46860.62800.61950.025*
H23B0.40450.44820.59890.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0261 (5)0.0273 (5)0.0207 (4)0.0103 (4)0.0027 (3)0.0001 (3)
O2A0.0526 (7)0.0354 (6)0.0290 (5)−0.0030 (5)0.0071 (5)0.0090 (4)
O3A0.0755 (9)0.0329 (6)0.0510 (7)0.0041 (6)−0.0062 (6)0.0252 (5)
O4AA0.0423 (8)0.0202 (8)0.102 (2)0.0160 (7)0.0016 (12)−0.0015 (11)
O5AA0.0380 (12)0.0642 (18)0.0363 (8)0.0307 (12)−0.0025 (7)−0.0156 (9)
O4AB0.0423 (8)0.0202 (8)0.102 (2)0.0160 (7)0.0016 (12)−0.0015 (11)
O5AB0.0380 (12)0.0642 (18)0.0363 (8)0.0307 (12)−0.0025 (7)−0.0156 (9)
O6A0.0272 (5)0.0441 (6)0.0212 (4)0.0108 (4)0.0046 (3)0.0097 (4)
O7A0.0551 (7)0.0220 (5)0.0306 (5)0.0106 (4)0.0009 (4)0.0038 (4)
N1A0.0361 (7)0.0246 (6)0.0310 (6)−0.0054 (5)−0.0104 (5)0.0102 (5)
N2A0.0293 (7)0.0380 (8)0.0613 (10)0.0194 (6)−0.0196 (6)−0.0268 (7)
N3A0.0211 (5)0.0263 (5)0.0227 (5)0.0065 (4)0.0027 (4)0.0047 (4)
C1A0.0157 (6)0.0188 (5)0.0193 (5)0.0003 (4)−0.0028 (4)−0.0005 (4)
C2A0.0237 (6)0.0188 (6)0.0262 (6)−0.0017 (5)−0.0060 (5)0.0046 (5)
C3A0.0273 (7)0.0151 (6)0.0443 (8)0.0029 (5)−0.0157 (6)0.0011 (5)
C4A0.0218 (7)0.0225 (6)0.0391 (7)0.0102 (5)−0.0103 (5)−0.0119 (5)
C5A0.0166 (6)0.0296 (6)0.0233 (6)0.0075 (5)−0.0028 (4)−0.0060 (5)
C6A0.0167 (6)0.0183 (5)0.0206 (5)0.0051 (4)−0.0018 (4)−0.0003 (4)
O1B0.0139 (4)0.0227 (4)0.0145 (4)0.0038 (3)0.0002 (3)0.0038 (3)
O2B0.0182 (4)0.0180 (4)0.0274 (4)0.0073 (3)−0.0006 (3)0.0019 (3)
O3B0.0179 (4)0.0145 (4)0.0164 (4)0.0042 (3)0.0014 (3)−0.0011 (3)
N1B0.0163 (5)0.0198 (5)0.0207 (5)0.0043 (4)0.0015 (4)−0.0001 (4)
C1B0.0476 (10)0.0365 (8)0.0302 (7)0.0140 (7)0.0002 (6)0.0141 (6)
C2B0.0267 (7)0.0324 (7)0.0197 (6)0.0106 (5)−0.0027 (5)0.0024 (5)
C3B0.0154 (6)0.0198 (5)0.0214 (5)0.0028 (4)−0.0035 (4)0.0023 (4)
C4B0.0133 (5)0.0153 (5)0.0140 (5)0.0038 (4)0.0010 (4)0.0018 (4)
C5B0.0141 (5)0.0168 (5)0.0159 (5)0.0040 (4)0.0022 (4)−0.0019 (4)
C6B0.0179 (6)0.0241 (6)0.0201 (5)0.0043 (4)0.0050 (4)0.0020 (4)
C7B0.0189 (6)0.0306 (7)0.0296 (6)0.0020 (5)0.0104 (5)0.0018 (5)
C8B0.0128 (6)0.0315 (7)0.0341 (7)0.0058 (5)0.0040 (5)−0.0059 (5)
C9B0.0180 (6)0.0293 (6)0.0271 (6)0.0110 (5)−0.0017 (4)−0.0027 (5)
C10B0.0170 (6)0.0208 (5)0.0206 (5)0.0067 (4)0.0025 (4)0.0015 (4)
C11B0.0133 (5)0.0157 (5)0.0155 (5)0.0028 (4)−0.0005 (4)0.0022 (4)
C12B0.0230 (6)0.0185 (5)0.0219 (6)0.0068 (4)0.0037 (4)0.0012 (4)
C13B0.0323 (7)0.0151 (5)0.0268 (6)0.0055 (5)0.0003 (5)0.0006 (4)
C14B0.0324 (7)0.0186 (6)0.0248 (6)−0.0027 (5)−0.0005 (5)0.0069 (5)
C15B0.0230 (6)0.0254 (6)0.0203 (6)0.0000 (5)0.0043 (4)0.0051 (4)
C16B0.0175 (6)0.0170 (5)0.0173 (5)0.0029 (4)0.0018 (4)0.0017 (4)
C17B0.0112 (5)0.0142 (5)0.0192 (5)0.0008 (4)0.0034 (4)0.0018 (4)
C18B0.0156 (5)0.0144 (5)0.0202 (5)0.0036 (4)0.0031 (4)−0.0030 (4)
C19B0.0185 (6)0.0148 (5)0.0239 (6)0.0025 (4)0.0002 (4)0.0023 (4)
C20B0.0184 (6)0.0209 (6)0.0208 (5)0.0011 (4)0.0035 (4)0.0039 (4)
C21B0.0181 (6)0.0378 (7)0.0335 (7)0.0093 (5)0.0012 (5)0.0008 (6)
C22B0.0249 (6)0.0194 (5)0.0194 (5)0.0055 (5)0.0010 (4)0.0030 (4)
C23B0.0228 (6)0.0193 (5)0.0175 (5)0.0006 (4)0.0062 (4)−0.0002 (4)

Geometric parameters (Å, °)

O1A—C1A1.2477 (14)C4B—C17B1.5543 (14)
O2A—N1A1.2302 (16)C5B—C6B1.3901 (16)
O3A—N1A1.2241 (15)C5B—C10B1.3962 (15)
O4AA—N2A1.190 (4)C6B—C7B1.3927 (17)
O5AA—N2A1.289 (4)C6B—H6BA0.9500
O4AB—N2A1.632 (16)C7B—C8B1.3825 (19)
O5AB—N2A0.876 (12)C7B—H7BA0.9500
O6A—N3A1.2295 (12)C8B—C9B1.3891 (19)
O7A—N3A1.2235 (13)C8B—H8BA0.9500
N1A—C2A1.4580 (18)C9B—C10B1.3900 (17)
N2A—C4A1.4501 (18)C9B—H9BA0.9500
N3A—C6A1.4601 (15)C10B—H10A0.9500
C1A—C2A1.4461 (17)C11B—C16B1.3869 (16)
C1A—C6A1.4481 (16)C11B—C12B1.4004 (15)
C2A—C3A1.3817 (19)C12B—C13B1.3840 (17)
C3A—C4A1.382 (2)C12B—H12A0.9500
C3A—H3AA0.9500C13B—C14B1.3892 (19)
C4A—C5A1.3921 (19)C13B—H13A0.9500
C5A—C6A1.3665 (16)C14B—C15B1.3901 (18)
C5A—H5AA0.9500C14B—H14A0.9500
O1B—C4B1.4243 (12)C15B—C16B1.3939 (16)
O1B—C3B1.4431 (14)C15B—H15A0.9500
O2B—C17B1.2013 (13)C16B—H16A0.9500
O3B—C17B1.3450 (12)C18B—C23B1.5180 (16)
O3B—C18B1.4647 (12)C18B—C19B1.5217 (16)
N1B—C21B1.4838 (16)C18B—H18A1.0000
N1B—C20B1.4961 (14)C19B—C20B1.5183 (17)
N1B—C22B1.5039 (15)C19B—H19A0.9900
N1B—H1BD0.9300C19B—H19B0.9900
C1B—C2B1.5126 (19)C20B—H20A0.9900
C1B—H1BA0.9800C20B—H20B0.9900
C1B—H1BB0.9800C21B—H21A0.9800
C1B—H1BC0.9800C21B—H21B0.9800
C2B—C3B1.5140 (16)C21B—H21C0.9800
C2B—H2BA0.9900C22B—C23B1.5175 (17)
C2B—H2BB0.9900C22B—H22A0.9900
C3B—H3BA0.9900C22B—H22B0.9900
C3B—H3BB0.9900C23B—H23A0.9900
C4B—C11B1.5259 (15)C23B—H23B0.9900
C4B—C5B1.5339 (15)
O3A—N1A—O2A122.35 (13)C7B—C6B—H6BA119.8
O3A—N1A—C2A118.08 (13)C8B—C7B—C6B120.44 (12)
O2A—N1A—C2A119.58 (11)C8B—C7B—H7BA119.8
O5AB—N2A—O4AA104.2 (9)C6B—C7B—H7BA119.8
O5AB—N2A—O5AA27.2 (10)C7B—C8B—C9B119.64 (11)
O4AA—N2A—O5AA123.4 (2)C7B—C8B—H8BA120.2
O5AB—N2A—C4A133.0 (8)C9B—C8B—H8BA120.2
O4AA—N2A—C4A119.5 (3)C8B—C9B—C10B120.12 (11)
O5AA—N2A—C4A117.02 (17)C8B—C9B—H9BA119.9
O5AB—N2A—O4AB119.9 (9)C10B—C9B—H9BA119.9
O4AA—N2A—O4AB15.8 (6)C9B—C10B—C5B120.47 (11)
O5AA—N2A—O4AB138.1 (5)C9B—C10B—H10A119.8
C4A—N2A—O4AB104.3 (6)C5B—C10B—H10A119.8
O7A—N3A—O6A123.43 (10)C16B—C11B—C12B118.87 (10)
O7A—N3A—C6A118.42 (10)C16B—C11B—C4B122.62 (9)
O6A—N3A—C6A118.10 (10)C12B—C11B—C4B118.27 (10)
O1A—C1A—C2A125.93 (11)C13B—C12B—C11B120.43 (11)
O1A—C1A—C6A122.04 (10)C13B—C12B—H12A119.8
C2A—C1A—C6A111.94 (10)C11B—C12B—H12A119.8
C3A—C2A—C1A123.20 (12)C12B—C13B—C14B120.32 (11)
C3A—C2A—N1A117.22 (11)C12B—C13B—H13A119.8
C1A—C2A—N1A119.56 (12)C14B—C13B—H13A119.8
C2A—C3A—C4A120.02 (12)C13B—C14B—C15B119.78 (11)
C2A—C3A—H3AA120.0C13B—C14B—H14A120.1
C4A—C3A—H3AA120.0C15B—C14B—H14A120.1
C3A—C4A—C5A121.07 (12)C14B—C15B—C16B119.72 (11)
C3A—C4A—N2A120.50 (13)C14B—C15B—H15A120.1
C5A—C4A—N2A118.39 (14)C16B—C15B—H15A120.1
C6A—C5A—C4A118.15 (12)C11B—C16B—C15B120.87 (10)
C6A—C5A—H5AA120.9C11B—C16B—H16A119.6
C4A—C5A—H5AA120.9C15B—C16B—H16A119.6
C5A—C6A—C1A125.55 (11)O2B—C17B—O3B124.27 (10)
C5A—C6A—N3A116.38 (11)O2B—C17B—C4B125.00 (10)
C1A—C6A—N3A118.07 (10)O3B—C17B—C4B110.66 (8)
C4B—O1B—C3B116.70 (8)O3B—C18B—C23B105.04 (8)
C17B—O3B—C18B117.48 (8)O3B—C18B—C19B110.30 (9)
C21B—N1B—C20B111.66 (9)C23B—C18B—C19B110.25 (9)
C21B—N1B—C22B111.21 (9)O3B—C18B—H18A110.4
C20B—N1B—C22B110.85 (9)C23B—C18B—H18A110.4
C21B—N1B—H1BD107.6C19B—C18B—H18A110.4
C20B—N1B—H1BD107.6C20B—C19B—C18B112.27 (9)
C22B—N1B—H1BD107.6C20B—C19B—H19A109.1
C2B—C1B—H1BA109.5C18B—C19B—H19A109.1
C2B—C1B—H1BB109.5C20B—C19B—H19B109.1
H1BA—C1B—H1BB109.5C18B—C19B—H19B109.1
C2B—C1B—H1BC109.5H19A—C19B—H19B107.9
H1BA—C1B—H1BC109.5N1B—C20B—C19B110.68 (9)
H1BB—C1B—H1BC109.5N1B—C20B—H20A109.5
C1B—C2B—C3B113.52 (10)C19B—C20B—H20A109.5
C1B—C2B—H2BA108.9N1B—C20B—H20B109.5
C3B—C2B—H2BA108.9C19B—C20B—H20B109.5
C1B—C2B—H2BB108.9H20A—C20B—H20B108.1
C3B—C2B—H2BB108.9N1B—C21B—H21A109.5
H2BA—C2B—H2BB107.7N1B—C21B—H21B109.5
O1B—C3B—C2B107.54 (10)H21A—C21B—H21B109.5
O1B—C3B—H3BA110.2N1B—C21B—H21C109.5
C2B—C3B—H3BA110.2H21A—C21B—H21C109.5
O1B—C3B—H3BB110.2H21B—C21B—H21C109.5
C2B—C3B—H3BB110.2N1B—C22B—C23B110.62 (9)
H3BA—C3B—H3BB108.5N1B—C22B—H22A109.5
O1B—C4B—C11B110.90 (8)C23B—C22B—H22A109.5
O1B—C4B—C5B106.28 (8)N1B—C22B—H22B109.5
C11B—C4B—C5B113.50 (8)C23B—C22B—H22B109.5
O1B—C4B—C17B108.42 (8)H22A—C22B—H22B108.1
C11B—C4B—C17B112.01 (9)C22B—C23B—C18B112.20 (9)
C5B—C4B—C17B105.37 (8)C22B—C23B—H23A109.2
C6B—C5B—C10B119.00 (10)C18B—C23B—H23A109.2
C6B—C5B—C4B119.43 (10)C22B—C23B—H23B109.2
C10B—C5B—C4B121.29 (10)C18B—C23B—H23B109.2
C5B—C6B—C7B120.33 (11)H23A—C23B—H23B107.9
C5B—C6B—H6BA119.8
O1A—C1A—C2A—C3A174.36 (11)C10B—C5B—C6B—C7B−0.18 (16)
C6A—C1A—C2A—C3A−2.28 (16)C4B—C5B—C6B—C7B−174.30 (10)
O1A—C1A—C2A—N1A−4.32 (18)C5B—C6B—C7B—C8B0.50 (18)
C6A—C1A—C2A—N1A179.04 (10)C6B—C7B—C8B—C9B−0.40 (18)
O3A—N1A—C2A—C3A−15.05 (17)C7B—C8B—C9B—C10B−0.01 (18)
O2A—N1A—C2A—C3A165.15 (12)C8B—C9B—C10B—C5B0.32 (17)
O3A—N1A—C2A—C1A163.71 (12)C6B—C5B—C10B—C9B−0.22 (16)
O2A—N1A—C2A—C1A−16.09 (17)C4B—C5B—C10B—C9B173.79 (10)
C1A—C2A—C3A—C4A2.68 (19)O1B—C4B—C11B—C16B107.93 (11)
N1A—C2A—C3A—C4A−178.61 (11)C5B—C4B—C11B—C16B−132.52 (10)
C2A—C3A—C4A—C5A−2.15 (19)C17B—C4B—C11B—C16B−13.34 (13)
C2A—C3A—C4A—N2A175.61 (11)O1B—C4B—C11B—C12B−66.41 (12)
O5AB—N2A—C4A—C3A163.1 (14)C5B—C4B—C11B—C12B53.14 (12)
O4AA—N2A—C4A—C3A7.5 (2)C17B—C4B—C11B—C12B172.32 (9)
O5AA—N2A—C4A—C3A−169.72 (17)C16B—C11B—C12B—C13B0.58 (16)
O4AB—N2A—C4A—C3A3.0 (6)C4B—C11B—C12B—C13B175.13 (10)
O5AB—N2A—C4A—C5A−19.1 (15)C11B—C12B—C13B—C14B−0.33 (18)
O4AA—N2A—C4A—C5A−174.66 (18)C12B—C13B—C14B—C15B−0.23 (18)
O5AA—N2A—C4A—C5A8.1 (2)C13B—C14B—C15B—C16B0.52 (18)
O4AB—N2A—C4A—C5A−179.2 (5)C12B—C11B—C16B—C15B−0.28 (16)
C3A—C4A—C5A—C6A1.44 (18)C4B—C11B—C16B—C15B−174.59 (10)
N2A—C4A—C5A—C6A−176.37 (11)C14B—C15B—C16B—C11B−0.26 (17)
C4A—C5A—C6A—C1A−1.26 (18)C18B—O3B—C17B—O2B8.72 (16)
C4A—C5A—C6A—N3A178.35 (11)C18B—O3B—C17B—C4B−168.41 (9)
O1A—C1A—C6A—C5A−175.18 (11)O1B—C4B—C17B—O2B−11.26 (15)
C2A—C1A—C6A—C5A1.61 (16)C11B—C4B—C17B—O2B111.44 (12)
O1A—C1A—C6A—N3A5.21 (16)C5B—C4B—C17B—O2B−124.70 (11)
C2A—C1A—C6A—N3A−178.00 (10)O1B—C4B—C17B—O3B165.86 (8)
O7A—N3A—C6A—C5A−140.18 (12)C11B—C4B—C17B—O3B−71.45 (11)
O6A—N3A—C6A—C5A37.65 (15)C5B—C4B—C17B—O3B52.41 (11)
O7A—N3A—C6A—C1A39.47 (16)C17B—O3B—C18B—C23B−172.99 (9)
O6A—N3A—C6A—C1A−142.70 (11)C17B—O3B—C18B—C19B68.22 (12)
C4B—O1B—C3B—C2B−161.04 (9)O3B—C18B—C19B—C20B62.58 (12)
C1B—C2B—C3B—O1B63.23 (14)C23B—C18B—C19B—C20B−52.98 (12)
C3B—O1B—C4B—C11B−45.26 (11)C21B—N1B—C20B—C19B177.60 (9)
C3B—O1B—C4B—C5B−169.05 (8)C22B—N1B—C20B—C19B−57.80 (12)
C3B—O1B—C4B—C17B78.11 (11)C18B—C19B—C20B—N1B55.83 (12)
O1B—C4B—C5B—C6B−30.91 (13)C21B—N1B—C22B—C23B−177.23 (9)
C11B—C4B—C5B—C6B−153.07 (10)C20B—N1B—C22B—C23B57.92 (12)
C17B—C4B—C5B—C6B84.02 (11)N1B—C22B—C23B—C18B−55.98 (12)
O1B—C4B—C5B—C10B155.10 (9)O3B—C18B—C23B—C22B−65.73 (11)
C11B—C4B—C5B—C10B32.95 (13)C19B—C18B—C23B—C22B53.09 (12)
C17B—C4B—C5B—C10B−89.96 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1B—H1BD···O1A0.931.812.6276 (12)145
N1B—H1BD···O2A0.932.333.0537 (15)135
C20B—H20B···Cg20.992.773.7553 (13)173

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2814).

References

  • Becke, A. D. (1988). Phys. Rev. A, 38, 3098–100. [PubMed]
  • Becke, A. D. (1993). J. Chem. Phys.98, 5648-5652.
  • Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548. [PubMed]
  • Chapple, C. R., Khullar, V., Gabriel, Z., Muston, D., Bitoun, C. E. & Weinstein, D. (2008). Eur. Urol.54, 543–562. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Frisch, M. J., et al. (2004). GAUSSIAN03 Gaussian Inc., Wallingford, CT, USA.
  • Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.
  • Harrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.
  • Hehre, W. J., Radom, L., Schleyer, P.vR. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory New York: Wiley.
  • Jünemann, K.-P., Hessdörfer, E., Unamba-Oparah, I., Berse, M., Brünjes, R., Madersbacher, H. & Gramatté, T. (2006). Urol. Int.77, 334–339. [PubMed]
  • Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. [PubMed]
  • Madersbacher, H. & Gramatté, T. (2006). Urol. Int.77, 334–339. [PubMed]
  • Matsushima, S., Inada, H. & Asai, T. (1997). Eur. J. Pharmacol.333, 93–94. [PubMed]
  • Noguchi, K. & Masuda, M. (1998). Hinyokika Kiyo, 44, 687–689. [PubMed]
  • Okada, H. & Sengodu, J. (1998). Hinyokika Kiyo, 44, 65–66. [PubMed]
  • Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED Oxford Diffraction Ltd, Abingdon,England.
  • Rong, X., Meng-Kwoon, S. & Mei-lin, G. (1999). Eur. J. Pharm. Sci.8, 39–47.
  • Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro WebMO, LLC: Holland, MI, USA, http://www.webmo.net.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.
  • Szumma, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165–175.
  • Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691–o1692.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography