PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1897.
Published online 2009 July 18. doi:  10.1107/S1600536809027299
PMCID: PMC2977139

N′-(3,4-Dihydroxy­benzyl­idene)acetohydrazide monohydrate

Abstract

In the title compound, C9H10N2O3·H2O, the Schiff base mol­ecule is approximately planar, the dihedral angle between the benzene and acetohydrazide planes being 5.40 (7)°. An intra­molecular O—H(...)O hydrogen bond is observed. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (100) by O—H(...)O, N—H(...)O, O—H(...)N and C—H(...)O hydrogen bonds, and by π–π inter­actions between symmetry-related benzene rings [centroid–centroid distance = 3.543 (2) Å].

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997 [triangle]); Offe et al. (1952 [triangle]); Richardson et al. (1988 [triangle]). For related structures, see: Li & Jian (2008 [triangle]); Tamboura et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1897-scheme1.jpg

Experimental

Crystal data

  • C9H10N2O3·H2O
  • M r = 212.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1897-efi1.jpg
  • a = 9.325 (4) Å
  • b = 13.877 (7) Å
  • c = 8.210 (4) Å
  • β = 106.435 (5)°
  • V = 1019.0 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 223 K
  • 0.25 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.977, T max = 0.979
  • 5060 measured reflections
  • 1765 independent reflections
  • 1640 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.102
  • S = 1.03
  • 1765 reflections
  • 148 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027299/ci2851sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027299/ci2851Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) for financial support.

supplementary crystallographic information

Comment

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

In the Schiff base molecule, the acetohydrazide group is planar and it forms a dihedral angle of 5.40 (7)° with the benzene ring. The molecule adopts a trans configuration with respect to the C═N bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008). An intramolecular O1—H1···O2 hydrogen bond is observed.

In the crystal, the Schiff base and water molecules are linked into a two-dimensional network by O—H···O, N—H···O, O—H···N and C—H···O hydrogen bonds (Table 1). In the network, an intermolecular π-π interaction is also observed between the benzene rings of the molecules at (x, y, z) and (1-x, 1-y, -z), with a centroid-to-centroid distance of 3.543 (2) Å.

Experimental

3,4-Dihydroxybenzaldehyde (1.38 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 95% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 460–462 K).

Refinement

H atoms of the water molecule were located in a difference map and were refined freely. All other H atoms were positioned geometrically (N-H = 0.86 Å, O-H = 0.82Å and C-H = 0.93 or 0.96Å) and refined using a riding model, with Uiso(H) =1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Dashed lines indicate hydrogen bonds.
Fig. 2.
Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H10N2O3·H2OF(000) = 448
Mr = 212.21Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1765 reflections
a = 9.325 (4) Åθ = 2.3–25.0°
b = 13.877 (7) ŵ = 0.11 mm1
c = 8.210 (4) ÅT = 223 K
β = 106.435 (5)°Block, colourless
V = 1019.0 (8) Å30.25 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1765 independent reflections
Radiation source: fine-focus sealed tube1640 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→11
Tmin = 0.977, Tmax = 0.979k = −16→15
5060 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102w = 1/[σ2(Fo2) + (0.061P)2 + 0.2305P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1765 reflectionsΔρmax = 0.17 e Å3
148 parametersΔρmin = −0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H1E0.587 (2)0.2853 (17)0.445 (3)0.074 (7)*
H1F0.708 (3)0.3160 (19)0.554 (4)0.098 (9)*
O10.52471 (13)0.68267 (7)0.22048 (14)0.0454 (3)
H10.48990.65820.29190.068*
O20.56486 (12)0.50802 (7)0.36246 (13)0.0457 (3)
H20.58200.45280.39810.068*
O30.95803 (14)0.14282 (8)0.12355 (14)0.0552 (4)
C10.70188 (15)0.45382 (10)0.16721 (16)0.0341 (3)
H1A0.71580.39230.21400.041*
C60.75933 (14)0.47698 (10)0.03162 (16)0.0338 (3)
C20.62483 (15)0.52199 (9)0.23148 (16)0.0328 (3)
C30.60346 (15)0.61461 (10)0.16033 (17)0.0345 (3)
C70.84173 (15)0.40745 (10)−0.04047 (17)0.0366 (3)
H70.87690.4262−0.13090.044*
C80.99310 (16)0.17592 (10)0.00126 (17)0.0375 (3)
C40.66068 (17)0.63811 (11)0.02822 (19)0.0418 (4)
H40.64730.6998−0.01790.050*
C50.73807 (16)0.56971 (11)−0.03575 (18)0.0412 (4)
H50.77650.5859−0.12510.049*
N10.86712 (13)0.32131 (8)0.01702 (14)0.0364 (3)
N20.94966 (13)0.26400 (9)−0.06162 (14)0.0380 (3)
H2A0.97280.2846−0.14970.046*
C91.08651 (18)0.12110 (13)−0.08811 (19)0.0483 (4)
H9A1.18430.1107−0.01170.072*
H9B1.09490.1573−0.18460.072*
H9C1.04030.0601−0.12540.072*
O1W0.62190 (16)0.32929 (8)0.51868 (17)0.0472 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0601 (7)0.0354 (6)0.0490 (6)0.0077 (5)0.0288 (5)0.0011 (4)
O20.0665 (7)0.0386 (6)0.0438 (6)0.0082 (5)0.0350 (5)0.0048 (4)
O30.0887 (9)0.0445 (6)0.0447 (6)0.0080 (6)0.0390 (6)0.0052 (5)
C10.0409 (7)0.0310 (7)0.0331 (7)0.0005 (5)0.0148 (6)0.0008 (5)
C60.0349 (7)0.0369 (7)0.0319 (7)−0.0028 (5)0.0133 (5)−0.0022 (5)
C20.0366 (7)0.0349 (7)0.0295 (6)−0.0026 (5)0.0138 (5)−0.0019 (5)
C30.0365 (7)0.0322 (7)0.0362 (7)−0.0008 (5)0.0127 (5)−0.0031 (5)
C70.0399 (7)0.0420 (8)0.0324 (7)−0.0034 (6)0.0175 (6)−0.0014 (6)
C80.0438 (8)0.0430 (8)0.0273 (6)0.0011 (6)0.0126 (6)−0.0035 (5)
C40.0499 (8)0.0342 (8)0.0461 (8)0.0014 (6)0.0213 (7)0.0073 (6)
C50.0457 (8)0.0443 (8)0.0401 (8)−0.0023 (6)0.0229 (6)0.0055 (6)
N10.0408 (6)0.0401 (7)0.0336 (6)0.0012 (5)0.0191 (5)−0.0028 (5)
N20.0478 (7)0.0425 (7)0.0317 (6)0.0049 (5)0.0242 (5)0.0012 (5)
C90.0533 (9)0.0556 (10)0.0388 (8)0.0155 (7)0.0177 (7)0.0000 (7)
O1W0.0532 (7)0.0412 (6)0.0542 (7)0.0047 (5)0.0265 (6)−0.0013 (5)

Geometric parameters (Å, °)

O1—C31.3713 (17)C7—H70.93
O1—H10.82C8—N21.3439 (19)
O2—C21.3591 (17)C8—C91.496 (2)
O2—H20.82C4—C51.383 (2)
O3—C81.2296 (18)C4—H40.93
C1—C21.3799 (19)C5—H50.93
C1—C61.4025 (19)N1—N21.3868 (16)
C1—H1A0.93N2—H2A0.86
C6—C51.392 (2)C9—H9A0.96
C6—C71.4592 (19)C9—H9B0.96
C2—C31.4025 (19)C9—H9C0.96
C3—C41.377 (2)O1W—H1E0.85 (3)
C7—N11.2823 (19)O1W—H1F0.80 (3)
C3—O1—H1109.5N2—C8—C9115.35 (12)
C2—O2—H2109.5C3—C4—C5119.80 (13)
C2—C1—C6120.24 (12)C3—C4—H4120.1
C2—C1—H1A119.9C5—C4—H4120.1
C6—C1—H1A119.9C4—C5—C6120.95 (13)
C5—C6—C1118.93 (13)C4—C5—H5119.5
C5—C6—C7118.82 (12)C6—C5—H5119.5
C1—C6—C7122.25 (12)C7—N1—N2115.60 (11)
O2—C2—C1125.46 (12)C8—N2—N1119.30 (11)
O2—C2—C3114.74 (12)C8—N2—H2A120.3
C1—C2—C3119.80 (12)N1—N2—H2A120.3
O1—C3—C4119.15 (12)C8—C9—H9A109.5
O1—C3—C2120.57 (12)C8—C9—H9B109.5
C4—C3—C2120.28 (13)H9A—C9—H9B109.5
N1—C7—C6122.05 (12)C8—C9—H9C109.5
N1—C7—H7119.0H9A—C9—H9C109.5
C6—C7—H7119.0H9B—C9—H9C109.5
O3—C8—N2122.18 (13)H1E—O1W—H1F103 (2)
O3—C8—C9122.47 (14)
C2—C1—C6—C50.4 (2)O1—C3—C4—C5−178.86 (13)
C2—C1—C6—C7179.90 (12)C2—C3—C4—C50.7 (2)
C6—C1—C2—O2−179.73 (12)C3—C4—C5—C60.0 (2)
C6—C1—C2—C30.3 (2)C1—C6—C5—C4−0.5 (2)
O2—C2—C3—O1−1.26 (18)C7—C6—C5—C4179.97 (13)
C1—C2—C3—O1178.75 (12)C6—C7—N1—N2−178.62 (11)
O2—C2—C3—C4179.15 (12)O3—C8—N2—N12.4 (2)
C1—C2—C3—C4−0.8 (2)C9—C8—N2—N1−177.75 (12)
C5—C6—C7—N1179.01 (13)C7—N1—N2—C8173.80 (12)
C1—C6—C7—N1−0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.222.6694 (18)115
O1—H1···O1Wi0.822.112.8529 (18)151
O1W—H1F···O3ii0.80 (3)2.31 (3)3.031 (2)152 (3)
O1W—H1F···N1ii0.80 (3)2.48 (3)3.101 (2)135 (2)
O2—H2···O1W0.821.962.7736 (18)171
N2—H2A···O3iii0.862.092.9110 (19)160
C7—H7···O3iii0.932.533.311 (2)142

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2851).

References

  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.
  • Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409. [PMC free article] [PubMed]
  • Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.
  • Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography