PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m996.
Published online 2009 July 25. doi:  10.1107/S1600536809029006
PMCID: PMC2977133

Bis[N′-(2-pyridylmethyl­ene-κN)benzo­hydrazide-κN′]bis­(thio­cyanato-κN)cobalt(II)

Abstract

In the title complex, [Co(NCS)2(C13H11N3O)2], the CoII centre adopts a distorted octa­hedral coordination geometry with two cis-bidentate Schiff base ligands and two cis thio­cyanate ligands. The Schiff base ligand coordinates via the imine N and pyridine N atoms. The CoII atom lies on a crystallographic twofold rotational axis. Non-classical inter­molecular C—H(...)O hydrogen bonds link the complex mol­ecules into chains along [001].

Related literature

For metal complexes of the same Schiff base, see: Basak et al. (2008 [triangle]); Chen et al. (2005 [triangle]); Christidis et al. (1999 [triangle]); Pal & Pal (2002 [triangle]); Paschalidis & Gdaniec (2004 [triangle]); Paschalidis et al. (2000 [triangle]); Pelagatti et al. (2000 [triangle]); Pouralimardan et al. (2007 [triangle]); Ogata et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m996-scheme1.jpg

Experimental

Crystal data

  • [Co(NCS)2(C13H11N3O)2]
  • M r = 625.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m996-efi1.jpg
  • a = 17.112 (10) Å
  • b = 10.256 (6) Å
  • c = 17.945 (15) Å
  • β = 117.50 (3)°
  • V = 2794 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 150 K
  • 0.19 × 0.18 × 0.10 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.862, T max = 0.924
  • 15579 measured reflections
  • 2742 independent reflections
  • 1666 reflections with I > 2σ
  • R int = 0.119

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.100
  • S = 0.97
  • 2742 reflections
  • 186 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: DIAMOND (Brandenburg, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029006/pv2186sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029006/pv2186Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Science Council of Taiwan for financial support.

supplementary crystallographic information

Comment

The Schiff base, N'-(pyridin-2-ylmethylene)benzohydrazide, reacts with cobalt acetate tetrahydrate and sodium thiocyanate in water/methanol mixture to afford the tilte complex, (I). The cobalt atom lies on a crystallographic 2-fold rotational axis. The complex (I) adopts octahedral coordination geometry with the two bidentate Schiff base ligands being cis to each other (Fig. 1). The Schiff base coordinates via the imine N and pyridine N atoms. The two thiocyanate ligands are also cis to each other.

Metal complexes of the same Schiff base ligand have been reported in the literature (Basak et al. 2008; Chen et al. 2005; Christidis, et al. 1999; Pal & Pal, 2002; Paschalidis & Gdaniec, 2004; Paschalidis et al. 2000; Pelagatti et al. 2000; Pouralimardan, et al. 2007; Ogata et al. 2008).

Non-classical intermolecular H-bonds of the type C—H···O exist (Table 1). These H-bonds link the complex into one-dimensional hydrogen bonded chains (Fig. 2).

Experimental

To a methanolic solution (20 ml) of cobalt acetate tetrahydrate (0.249 g, 1.00 mmol), a solution of N'-(pyridin-2-ylmethylene)benzohydrazide (1.00 mmol) was added, followed by the addition with constant stirring of a solution of sodium thiocyanate (0.162 g, 2.00 mmol) in a minimum volume of water/methanol mixture. The resultant solution was kept at room temperature yielding orange crystals suitable for X-ray diffraction after a few days. Crystals of (I) were isolated by filtration and were air-dried.

Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 and N—H = 0.88 Å while Uiso(H) = 1.2Ueq(C or N) for all the H atoms.

Figures

Fig. 1.
The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are dipicted by circles of an arbitrary radius. Unlabeled atoms of the complex are related to the labeled atoms by: -x, y, 0.5 - z.
Fig. 2.
A packing diagram of the title compound along the a axis showing the intermolecular hydrogen bonds (dashed lines).

Crystal data

[Co(NCS)2(C13H11N3O)2]F(000) = 1284
Mr = 625.59Dx = 1.487 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2526 reflections
a = 17.112 (10) Åθ = 2.4–22.3°
b = 10.256 (6) ŵ = 0.81 mm1
c = 17.945 (15) ÅT = 150 K
β = 117.50 (3)°Tubular, orange
V = 2794 (3) Å30.19 × 0.18 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer2742 independent reflections
Radiation source: fine-focus sealed tube1666 reflections with I > 2σ
graphiteRint = 0.119
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→21
Tmin = 0.862, Tmax = 0.924k = −12→12
15579 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0417P)2] where P = (Fo2 + 2Fc2)/3
2742 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.87355 (6)0.25000.0423 (2)
S1−0.23413 (6)0.57257 (9)0.08021 (6)0.0655 (3)
O10.08519 (16)0.8442 (2)0.02024 (13)0.0694 (7)
N1−0.00183 (16)0.8085 (3)0.08164 (14)0.0517 (7)
H1A−0.04810.76400.07620.062*
N20.03351 (16)0.8912 (2)0.14860 (13)0.0429 (6)
N30.09438 (15)1.0297 (2)0.28764 (13)0.0416 (6)
N4−0.09755 (18)0.7417 (3)0.18238 (16)0.0555 (7)
C1−0.1101 (2)0.6416 (3)−0.05536 (17)0.0510 (8)
H1−0.13680.6775−0.02390.061*
C2−0.1537 (2)0.5487 (4)−0.1162 (2)0.0620 (10)
H2−0.21100.5218−0.12690.074*
C3−0.1155 (3)0.4944 (4)−0.1620 (2)0.0651 (10)
H3−0.14630.4302−0.20340.078*
C4−0.0334 (2)0.5333 (4)−0.1474 (2)0.0610 (10)
H4−0.00700.4963−0.17880.073*
C50.0115 (2)0.6270 (3)−0.08666 (18)0.0532 (9)
H50.06870.6536−0.07680.064*
C6−0.0261 (2)0.6823 (3)−0.04033 (16)0.0419 (7)
C70.0246 (2)0.7850 (3)0.02159 (17)0.0451 (8)
C80.0888 (2)0.9814 (3)0.15504 (16)0.0428 (7)
H80.10710.99420.11300.051*
C90.12177 (18)1.0627 (3)0.23016 (16)0.0391 (7)
C100.1779 (2)1.1670 (3)0.24127 (18)0.0495 (8)
H100.19591.18670.19980.059*
C110.2070 (2)1.2413 (3)0.3128 (2)0.0588 (9)
H110.24421.31450.32100.071*
C120.1812 (2)1.2073 (4)0.3725 (2)0.0627 (10)
H120.20131.25600.42300.075*
C130.1256 (2)1.1012 (3)0.35803 (18)0.0527 (9)
H130.10891.07830.40000.063*
C14−0.1556 (2)0.6713 (3)0.13930 (19)0.0472 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0530 (4)0.0434 (4)0.0368 (3)0.0000.0260 (3)0.000
S10.0679 (7)0.0601 (6)0.0712 (6)−0.0156 (5)0.0344 (5)−0.0118 (5)
O10.0732 (17)0.093 (2)0.0596 (13)−0.0341 (16)0.0455 (13)−0.0249 (14)
N10.0644 (18)0.0570 (18)0.0456 (13)−0.0208 (15)0.0355 (13)−0.0168 (14)
N20.0544 (17)0.0446 (16)0.0325 (12)−0.0039 (14)0.0225 (12)−0.0067 (13)
N30.0454 (15)0.0473 (16)0.0335 (12)0.0040 (13)0.0196 (11)−0.0042 (12)
N40.0649 (19)0.0545 (19)0.0543 (15)−0.0096 (17)0.0336 (15)−0.0041 (16)
C10.055 (2)0.059 (2)0.0415 (15)−0.0055 (19)0.0240 (15)−0.0068 (17)
C20.057 (2)0.072 (3)0.0566 (19)−0.017 (2)0.0256 (18)−0.015 (2)
C30.075 (3)0.063 (3)0.0542 (19)−0.008 (2)0.028 (2)−0.017 (2)
C40.075 (3)0.063 (2)0.0526 (19)0.000 (2)0.0364 (19)−0.013 (2)
C50.057 (2)0.064 (2)0.0481 (17)−0.0047 (19)0.0329 (17)−0.0077 (19)
C60.0475 (19)0.0446 (19)0.0324 (14)−0.0012 (17)0.0173 (14)−0.0009 (15)
C70.053 (2)0.049 (2)0.0381 (15)0.0017 (18)0.0249 (15)0.0019 (16)
C80.0485 (19)0.0461 (19)0.0376 (15)−0.0008 (17)0.0231 (14)−0.0006 (15)
C90.0389 (18)0.0405 (19)0.0362 (14)0.0056 (16)0.0160 (14)0.0004 (14)
C100.053 (2)0.046 (2)0.0452 (16)−0.0013 (18)0.0194 (16)0.0016 (17)
C110.055 (2)0.051 (2)0.0608 (19)−0.0083 (19)0.0193 (17)−0.008 (2)
C120.061 (2)0.063 (3)0.0556 (19)−0.006 (2)0.0192 (18)−0.027 (2)
C130.055 (2)0.059 (2)0.0439 (16)0.0025 (19)0.0236 (16)−0.0093 (18)
C140.056 (2)0.044 (2)0.0516 (18)−0.0009 (18)0.0335 (17)0.0049 (17)

Geometric parameters (Å, °)

Co1—N4i2.054 (3)C2—H20.9500
Co1—N42.054 (3)C3—C41.364 (4)
Co1—N32.150 (3)C3—H30.9500
Co1—N3i2.150 (3)C4—C51.389 (4)
Co1—N22.153 (3)C4—H40.9500
Co1—N2i2.153 (3)C5—C61.386 (4)
S1—C141.624 (4)C5—H50.9500
O1—C71.211 (3)C6—C71.486 (4)
N1—N21.363 (3)C8—C91.459 (4)
N1—C71.369 (3)C8—H80.9500
N1—H1A0.8801C9—C101.389 (4)
N2—C81.289 (4)C10—C111.373 (4)
N3—C131.340 (3)C10—H100.9500
N3—C91.358 (3)C11—C121.379 (4)
N4—C141.182 (4)C11—H110.9500
C1—C21.380 (4)C12—C131.389 (4)
C1—C61.397 (4)C12—H120.9500
C1—H10.9500C13—H130.9500
C2—C31.381 (4)
N4i—Co1—N497.62 (16)C2—C3—H3120.1
N4i—Co1—N390.99 (11)C3—C4—C5120.1 (3)
N4—Co1—N3164.56 (8)C3—C4—H4120.0
N4i—Co1—N3i164.56 (8)C5—C4—H4120.0
N4—Co1—N3i90.99 (11)C4—C5—C6120.7 (3)
N3—Co1—N3i83.68 (13)C4—C5—H5119.6
N4i—Co1—N295.39 (10)C6—C5—H5119.6
N4—Co1—N290.98 (10)C5—C6—C1118.9 (3)
N3—Co1—N275.41 (9)C5—C6—C7117.7 (3)
N3i—Co1—N297.25 (9)C1—C6—C7123.3 (3)
N4i—Co1—N2i90.98 (10)O1—C7—N1121.6 (3)
N4—Co1—N2i95.39 (10)O1—C7—C6123.4 (2)
N3—Co1—N2i97.25 (9)N1—C7—C6115.0 (3)
N3i—Co1—N2i75.41 (9)N2—C8—C9116.6 (2)
N2—Co1—N2i170.33 (14)N2—C8—H8121.7
N2—N1—C7129.1 (2)C9—C8—H8121.7
N2—N1—H1A115.5N3—C9—C10122.7 (3)
C7—N1—H1A115.4N3—C9—C8116.0 (3)
C8—N2—N1122.3 (2)C10—C9—C8121.3 (3)
C8—N2—Co1117.08 (18)C11—C10—C9119.4 (3)
N1—N2—Co1120.63 (18)C11—C10—H10120.3
C13—N3—C9116.9 (3)C9—C10—H10120.3
C13—N3—Co1128.18 (19)C10—C11—C12118.5 (3)
C9—N3—Co1114.80 (18)C10—C11—H11120.7
C14—N4—Co1175.8 (2)C12—C11—H11120.7
C2—C1—C6119.4 (3)C11—C12—C13119.4 (3)
C2—C1—H1120.3C11—C12—H12120.3
C6—C1—H1120.3C13—C12—H12120.3
C1—C2—C3121.2 (3)N3—C13—C12123.0 (3)
C1—C2—H2119.4N3—C13—H13118.5
C3—C2—H2119.4C12—C13—H13118.5
C4—C3—C2119.7 (3)N4—C14—S1179.0 (3)
C4—C3—H3120.1
C7—N1—N2—C814.7 (5)C4—C5—C6—C7−178.0 (3)
C7—N1—N2—Co1−164.3 (2)C2—C1—C6—C5−0.6 (4)
N4i—Co1—N2—C8−90.9 (2)C2—C1—C6—C7177.7 (3)
N4—Co1—N2—C8171.3 (2)N2—N1—C7—O1−3.1 (5)
N3—Co1—N2—C8−1.3 (2)N2—N1—C7—C6176.6 (3)
N3i—Co1—N2—C880.2 (2)C5—C6—C7—O118.1 (4)
N4i—Co1—N2—N188.1 (2)C1—C6—C7—O1−160.3 (3)
N4—Co1—N2—N1−9.6 (2)C5—C6—C7—N1−161.6 (3)
N3—Co1—N2—N1177.7 (2)C1—C6—C7—N120.1 (4)
N3i—Co1—N2—N1−100.8 (2)N1—N2—C8—C9−179.7 (2)
N4i—Co1—N3—C13−85.0 (3)Co1—N2—C8—C9−0.7 (3)
N4—Co1—N3—C13150.9 (3)C13—N3—C9—C10−1.4 (4)
N3i—Co1—N3—C1380.5 (2)Co1—N3—C9—C10175.5 (2)
N2—Co1—N3—C13179.7 (3)C13—N3—C9—C8178.4 (3)
N2i—Co1—N3—C136.1 (3)Co1—N3—C9—C8−4.6 (3)
N4i—Co1—N3—C998.5 (2)N2—C8—C9—N33.6 (4)
N4—Co1—N3—C9−25.7 (5)N2—C8—C9—C10−176.5 (3)
N3i—Co1—N3—C9−96.0 (2)N3—C9—C10—C11−0.4 (5)
N2—Co1—N3—C93.18 (19)C8—C9—C10—C11179.7 (3)
N2i—Co1—N3—C9−170.40 (19)C9—C10—C11—C121.7 (5)
C6—C1—C2—C30.7 (5)C10—C11—C12—C13−1.2 (5)
C1—C2—C3—C4−0.4 (5)C9—N3—C13—C122.0 (4)
C2—C3—C4—C50.1 (5)Co1—N3—C13—C12−174.5 (2)
C3—C4—C5—C6−0.1 (5)C11—C12—C13—N3−0.8 (5)
C4—C5—C6—C10.3 (5)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···O1ii0.952.503.335 (5)146

Symmetry codes: (ii) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2186).

References

  • Basak, S., Chopra, D. & Rajak, K. K. (2008). J. Organomet. Chem.693, 2649–2656.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, L., Zhang, W., Huang, S., Jin, X. & Sun, W.-H. (2005). Inorg. Chem. Commun 8, 41–43.
  • Christidis, P. C., Tossidis, I. A. & Paschalidis, D. G. (1999). Acta Cryst. C55, 707–710.
  • Ogata, K., Watanabe, A., Yunokuchi, T. & Toyota, A. (2008). Inorg. Chem. Commun.11, 215–219.
  • Pal, S. & Pal, S. (2002). J. Chem. Soc. Dalton Trans. pp. 2102–2108.
  • Paschalidis, D. G. & Gdaniec, M. (2004). Struct. Chem 15, 605–612.
  • Paschalidis, D. G., Tossidis, I. A. & Gdaniec, M. (2000). Polyhedron, 19, 2629–2637.
  • Pelagatti, P., Carcelli, M., Franchi, F., Pelizzi, C., Bacchi, A. A., Fochi, A., Fruhauf, H.-W., Goubitz, K. & Vrieze, K. (2000). Eur. J. Inorg. Chem 3, 463–475.
  • Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography