PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1956.
Published online 2009 July 22. doi:  10.1107/S1600536809028165
PMCID: PMC2977132

7-Bromo-1-methyl­sulfinyl-2-phenyl­naphtho[2,1-b]furan

Abstract

In the title compound, C19H13BrO2S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the naphthofuran unit. The phenyl ring is rotated out of the naphthofuran plane, making a dihedral angle of 42.2 (1)°. The crystal structure is stabilized by two inter­molecular C—H(...)π inter­actions, and by non-classical inter­molecular C—H(...)O and C—H(...)Br hydrogen bonds.

Related literature

For the crystal structures of similar 2-phenyl­naphtho[2,1-b]furan derivatives, see: Choi et al. (2009a [triangle],b [triangle]). For details of the biological and pharmacological activity of naphthofuran compounds, see: Goel & Dixit (2004 [triangle]); Hagiwara et al. (1999 [triangle]); Piloto et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1956-scheme1.jpg

Experimental

Crystal data

  • C19H13BrO2S
  • M r = 385.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1956-efi5.jpg
  • a = 6.0007 (4) Å
  • b = 22.699 (2) Å
  • c = 11.2151 (8) Å
  • β = 91.267 (1)°
  • V = 1527.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.84 mm−1
  • T = 273 K
  • 0.25 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.538, T max = 0.765
  • 13412 measured reflections
  • 3476 independent reflections
  • 2280 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.091
  • S = 1.09
  • 3476 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028165/rk2156sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028165/rk2156Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Molecules containing naphthofuran skeleton have attracted considerable interest in view of their biological and pharmacological activities (Goel & Dixit, 2004; Hagiwara et al., 1999; Piloto et al., 2005). This work is related to our communications on the synthesis and structures of 2-phenylnaphtho[2,1-b]furan analogues, viz. 2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2009a) and 7-bromo-2-phenyl-1-(phenylsulfinyl)naphtho[2,1-b]furan (Choi et al., 2009b). Now we present the crystal structure of the title compound (I) (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.045 (3)Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle in I formed by the plane of the naphthofuran ring and the plane of 2-phenyl ring is 42.2 (1)°. The molecular packing (Fig. 2) is stabilized by two intermolecular C–H···π interactions; the first between an H atom of the 2-phenyl ring and the central benzene ring of the naphthofuran fragment (C14–H14···Cg1i), the second between the methyl H atom of the methylsulfinyl substituent and the phenyl ring (C19–H19B···Cg2ii), respectively (Table 1 and Fig. 2; Cg1 and Cg2 are the centroids of the C2/C3/C8/C9/C10/C11 benzene and C13-C18 benzene rings). Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z. In addition, weak non-classical intermolecular C–H···O and C–H···Br hydrogen bonds in the structure were observed (Table 1 and Fig. 3).

Experimental

The 77% 3-chloroperoxybenzoic acid (157 mg, 0.7 mmol) was added in small portions to a stirred solution of 7-bromo-1-methylsulfanyl-2-phenylnaphtho[2,1-b]furan (258 mg, 0.7 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1 : 2 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 503-504 K; Rf = 0.72 (hexane-ethyl acetate, 1 : 2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in dichloromethane at room temperature.

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C–H = 0.93 Å for the aryl and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl H atoms and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The C–H···π interactions (dotted lines) in the crystal structure of title compound. Cg denotes the ring centroids. Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
Fig. 3.
The C–H···O and C–H···Br interactions (dotted lines) in the title compound. Symmetry codes: (iii) x, -y+3/2, z-1/2; (iv) x-2, y, z-1; (v) x, -y+3/2, z+1/2; (vi) x+2, y, z+1.

Crystal data

C19H13BrO2SF(000) = 776
Mr = 385.26Dx = 1.676 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3117 reflections
a = 6.0007 (4) Åθ = 2.6–27.3°
b = 22.699 (2) ŵ = 2.84 mm1
c = 11.2151 (8) ÅT = 273 K
β = 91.267 (1)°Block, colourless
V = 1527.2 (2) Å30.25 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3476 independent reflections
Radiation source: fine-focus sealed tube2280 reflections with I > 2σ(I)
graphiteRint = 0.056
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.8°
[var phi] and ω scansh = −7→7
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)k = −29→29
Tmin = 0.538, Tmax = 0.765l = −14→14
13412 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0234P)2 + 2.3626P] where P = (Fo2 + 2Fc2)/3
3476 reflections(Δ/σ)max = 0.002
209 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1.04085 (7)0.614541 (18)1.06514 (4)0.03289 (13)
S0.04668 (16)0.71912 (4)0.66608 (8)0.0231 (2)
O1−0.0349 (4)0.54760 (10)0.6267 (2)0.0208 (5)
O20.0802 (4)0.74221 (11)0.7894 (2)0.0316 (7)
C10.0664 (6)0.64129 (15)0.6686 (3)0.0191 (7)
C20.2146 (6)0.60190 (15)0.7355 (3)0.0195 (8)
C30.4067 (6)0.60777 (15)0.8130 (3)0.0194 (7)
C40.4927 (6)0.66186 (16)0.8559 (3)0.0234 (8)
H40.42100.69670.83430.028*
C50.6794 (6)0.66431 (17)0.9287 (3)0.0255 (9)
H50.73430.70030.95600.031*
C60.7857 (6)0.61148 (17)0.9610 (3)0.0243 (8)
C70.7101 (6)0.55824 (16)0.9228 (3)0.0237 (8)
H70.78540.52410.94550.028*
C80.5162 (6)0.55461 (16)0.8484 (3)0.0210 (8)
C90.4331 (6)0.49849 (16)0.8115 (3)0.0230 (8)
H90.50840.46460.83570.028*
C100.2455 (6)0.49362 (15)0.7415 (3)0.0233 (8)
H100.18830.45710.71930.028*
C110.1437 (6)0.54571 (15)0.7050 (3)0.0196 (8)
C12−0.0772 (6)0.60640 (15)0.6050 (3)0.0199 (8)
C13−0.2527 (6)0.61732 (16)0.5143 (3)0.0206 (7)
C14−0.4437 (6)0.58201 (15)0.5112 (3)0.0226 (8)
H14−0.45950.55210.56710.027*
C15−0.6085 (6)0.59122 (17)0.4259 (3)0.0273 (9)
H15−0.73490.56750.42410.033*
C16−0.5855 (7)0.63605 (17)0.3422 (3)0.0286 (9)
H16−0.69850.64300.28590.034*
C17−0.3945 (7)0.67033 (16)0.3429 (3)0.0284 (9)
H17−0.37850.69980.28610.034*
C18−0.2277 (6)0.66085 (15)0.4275 (3)0.0229 (8)
H18−0.09850.68350.42670.028*
C190.2979 (7)0.73401 (16)0.5874 (3)0.0284 (9)
H19A0.33140.77530.59210.043*
H19B0.27790.72280.50530.043*
H19C0.41870.71190.62260.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0306 (2)0.0375 (2)0.0302 (2)−0.0047 (2)−0.00788 (15)0.0030 (2)
S0.0258 (5)0.0177 (5)0.0260 (5)0.0017 (4)0.0018 (4)−0.0027 (4)
O10.0258 (14)0.0156 (12)0.0210 (13)−0.0033 (10)0.0000 (11)0.0003 (10)
O20.0401 (17)0.0287 (15)0.0262 (15)0.0017 (13)0.0037 (12)−0.0113 (12)
C10.0228 (19)0.0155 (17)0.0191 (18)−0.0026 (15)0.0037 (14)−0.0009 (14)
C20.0244 (19)0.0190 (19)0.0154 (17)−0.0003 (15)0.0047 (14)0.0001 (14)
C30.0215 (18)0.0202 (18)0.0168 (17)−0.0005 (15)0.0030 (14)0.0011 (15)
C40.028 (2)0.0196 (19)0.022 (2)−0.0003 (16)0.0027 (16)0.0015 (15)
C50.028 (2)0.026 (2)0.022 (2)−0.0066 (17)0.0003 (16)−0.0022 (16)
C60.0241 (19)0.031 (2)0.0177 (17)−0.0044 (18)−0.0007 (14)0.0000 (17)
C70.027 (2)0.025 (2)0.0191 (18)0.0043 (17)0.0010 (15)0.0022 (16)
C80.026 (2)0.0229 (19)0.0148 (17)0.0037 (16)0.0037 (15)0.0005 (15)
C90.030 (2)0.0195 (19)0.0193 (19)0.0040 (16)0.0005 (16)0.0020 (15)
C100.036 (2)0.0162 (18)0.0184 (19)−0.0054 (16)0.0037 (16)−0.0006 (15)
C110.0215 (19)0.0195 (18)0.0178 (18)−0.0020 (15)0.0018 (15)−0.0009 (14)
C120.0227 (19)0.0163 (19)0.0210 (18)−0.0006 (15)0.0060 (14)−0.0019 (14)
C130.0211 (18)0.0220 (18)0.0188 (17)0.0031 (16)0.0041 (14)−0.0055 (16)
C140.026 (2)0.0186 (19)0.0236 (19)0.0014 (16)0.0055 (16)−0.0032 (15)
C150.021 (2)0.032 (2)0.029 (2)0.0007 (16)−0.0001 (16)−0.0096 (17)
C160.032 (2)0.030 (2)0.024 (2)0.0073 (18)−0.0055 (17)−0.0074 (17)
C170.040 (2)0.023 (2)0.022 (2)0.0049 (18)0.0018 (18)0.0003 (16)
C180.023 (2)0.0210 (19)0.025 (2)−0.0013 (16)0.0005 (16)−0.0022 (15)
C190.037 (2)0.022 (2)0.026 (2)−0.0037 (18)0.0034 (17)−0.0001 (16)

Geometric parameters (Å, °)

Br—C61.906 (3)C9—C101.362 (5)
S—O21.489 (3)C9—H90.9300
S—C11.771 (3)C10—C111.389 (5)
S—C191.796 (4)C10—H100.9300
O1—C111.371 (4)C12—C131.469 (5)
O1—C121.379 (4)C13—C181.398 (5)
C1—C121.360 (5)C13—C141.398 (5)
C1—C21.457 (5)C14—C151.377 (5)
C2—C111.385 (5)C14—H140.9300
C2—C31.434 (5)C15—C161.393 (5)
C3—C41.412 (5)C15—H150.9300
C3—C81.426 (5)C16—C171.385 (5)
C4—C51.373 (5)C16—H160.9300
C4—H40.9300C17—C181.381 (5)
C5—C61.402 (5)C17—H170.9300
C5—H50.9300C18—H180.9300
C6—C71.357 (5)C19—H19A0.9600
C7—C81.420 (5)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C8—C91.426 (5)
O2—S—C1109.20 (16)C9—C10—H10121.5
O2—S—C19107.03 (17)C11—C10—H10121.5
C1—S—C1997.99 (17)O1—C11—C2111.2 (3)
C11—O1—C12106.3 (3)O1—C11—C10123.2 (3)
C12—C1—C2106.6 (3)C2—C11—C10125.5 (3)
C12—C1—S122.1 (3)C1—C12—O1111.1 (3)
C2—C1—S131.3 (3)C1—C12—C13134.5 (3)
C11—C2—C3118.3 (3)O1—C12—C13114.3 (3)
C11—C2—C1104.9 (3)C18—C13—C14119.2 (3)
C3—C2—C1136.7 (3)C18—C13—C12121.0 (3)
C4—C3—C8118.6 (3)C14—C13—C12119.7 (3)
C4—C3—C2124.8 (3)C15—C14—C13120.4 (3)
C8—C3—C2116.7 (3)C15—C14—H14119.8
C5—C4—C3121.7 (3)C13—C14—H14119.8
C5—C4—H4119.2C14—C15—C16119.9 (4)
C3—C4—H4119.2C14—C15—H15120.0
C4—C5—C6118.7 (3)C16—C15—H15120.0
C4—C5—H5120.7C17—C16—C15120.1 (4)
C6—C5—H5120.7C17—C16—H16120.0
C7—C6—C5122.2 (3)C15—C16—H16120.0
C7—C6—Br119.0 (3)C18—C17—C16120.2 (4)
C5—C6—Br118.8 (3)C18—C17—H17119.9
C6—C7—C8120.1 (3)C16—C17—H17119.9
C6—C7—H7120.0C17—C18—C13120.1 (3)
C8—C7—H7120.0C17—C18—H18119.9
C7—C8—C9119.9 (3)C13—C18—H18119.9
C7—C8—C3118.8 (3)S—C19—H19A109.5
C9—C8—C3121.3 (3)S—C19—H19B109.5
C10—C9—C8121.2 (3)H19A—C19—H19B109.5
C10—C9—H9119.4S—C19—H19C109.5
C8—C9—H9119.4H19A—C19—H19C109.5
C9—C10—C11117.0 (3)H19B—C19—H19C109.5
O2—S—C1—C12137.3 (3)C8—C9—C10—C111.9 (5)
C19—S—C1—C12−111.5 (3)C12—O1—C11—C21.0 (4)
O2—S—C1—C2−39.4 (4)C12—O1—C11—C10−175.3 (3)
C19—S—C1—C271.8 (4)C3—C2—C11—O1−177.3 (3)
C12—C1—C2—C11−0.1 (4)C1—C2—C11—O1−0.6 (4)
S—C1—C2—C11177.1 (3)C3—C2—C11—C10−1.1 (5)
C12—C1—C2—C3175.8 (4)C1—C2—C11—C10175.6 (3)
S—C1—C2—C3−7.1 (6)C9—C10—C11—O1174.5 (3)
C11—C2—C3—C4−177.2 (3)C9—C10—C11—C2−1.3 (5)
C1—C2—C3—C47.4 (7)C2—C1—C12—O10.7 (4)
C11—C2—C3—C82.7 (5)S—C1—C12—O1−176.8 (2)
C1—C2—C3—C8−172.7 (4)C2—C1—C12—C13−174.3 (4)
C8—C3—C4—C51.0 (5)S—C1—C12—C138.3 (6)
C2—C3—C4—C5−179.1 (3)C11—O1—C12—C1−1.0 (4)
C3—C4—C5—C6−0.2 (6)C11—O1—C12—C13175.0 (3)
C4—C5—C6—C70.0 (6)C1—C12—C13—C1837.7 (6)
C4—C5—C6—Br−178.5 (3)O1—C12—C13—C18−137.1 (3)
C5—C6—C7—C8−0.5 (5)C1—C12—C13—C14−145.2 (4)
Br—C6—C7—C8178.0 (3)O1—C12—C13—C1440.0 (4)
C6—C7—C8—C9−178.0 (3)C18—C13—C14—C15−2.0 (5)
C6—C7—C8—C31.3 (5)C12—C13—C14—C15−179.2 (3)
C4—C3—C8—C7−1.5 (5)C13—C14—C15—C16−0.2 (5)
C2—C3—C8—C7178.6 (3)C14—C15—C16—C171.7 (6)
C4—C3—C8—C9177.8 (3)C15—C16—C17—C18−1.0 (6)
C2—C3—C8—C9−2.1 (5)C16—C17—C18—C13−1.2 (6)
C7—C8—C9—C10179.0 (3)C14—C13—C18—C172.7 (5)
C3—C8—C9—C10−0.3 (5)C12—C13—C18—C17179.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.932.703.377 (4)131
C19—H19B···Cg2ii0.962.993.497 (4)114
C18—H18···O2iii0.932.543.283 (4)137
C16—H16···Briv0.932.973.823 (4)153

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2; (iv) x−2, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2156).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1443. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1812. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Goel, A. & Dixit, M. (2004). Tetrahedron Lett 45, 8819–8821.
  • Hagiwara, H., Sato, K., Suzuki, T. & Ando, M. (1999). Heterocycles, 51, 497–500.
  • Piloto, A. M., Costa, S. P. G. & Goncalves, M. S. T. (2005). Tetrahedron Lett 46, 4757–4760.
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography