PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m895.
Published online 2009 July 11. doi:  10.1107/S1600536809026075
PMCID: PMC2977131

trans-Di-μ-carbonyl-bis­{carbon­yl[η5-2,3,4,5-tetra­methyl-1-(5-methyl-2-fur­yl)cyclo­penta­dien­yl]ruthenium(I)}(RuRu)

Abstract

In the crystal structure of the title compound, [Ru2(C14H17O)2(CO)4], each RuI atom is connected to one end-on and two bridging carbonyl groups and one cyclo­penta­dienyl ring. The two Ru atoms are connected into binuclear complexes via two bridging carbonyl groups, forming four-membered rings which are located on centres of inversion. The Ru—Ru distance of 2.7483 (11) Å corresponds to a single bond. The two carbonyl groups in these binuclear complexes are trans-oriented.

Related literature

For the crystal structures of related ruthenium complexes, see: Schumann et al. (2002 [triangle]); Bailey et al. (1978 [triangle]); Möhring & Coville (2006 [triangle]); King (1976 [triangle]); Arndt (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m895-scheme1.jpg

Experimental

Crystal data

  • [Ru2(C14H17O)2(CO)4]
  • M r = 716.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m895-efi1.jpg
  • a = 8.504 (3) Å
  • b = 16.978 (7) Å
  • c = 10.223 (4) Å
  • β = 102.220 (6)°
  • V = 1442.5 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 273 K
  • 0.15 × 0.11 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.854, T max = 0.918
  • 7123 measured reflections
  • 2552 independent reflections
  • 2448 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.088
  • S = 1.28
  • 2552 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026075/nc2148sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026075/nc2148Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Hebei Natural Science Foundation of China (No. B2008000150) and the Research Fund for the Doctoral Program of Hebei Normal University (No. L2005B18)

supplementary crystallographic information

Comment

Cyclopentadienyl metal complexes have been extensively investigated since ferrocene has been discovered. Replacement of the hydrogen atoms by other substituents alters both the steric and electronic influences of the µ 5-cyclopentadienyl ring, resulting in differing reactivity and stability of the substituted cyclopentadienyl metal complexes. (King, 1976 and Arndt, 2002). Especially for metallocene polymerization catalysts, the steric and electronic effects of cyclopentadienyl ring substituents greatly influence the catalytic activity (Bailey et al., 1978 and Möhring & Coville, 2006).

In the crystal structure of the title compound the Ru atoms is connected to one cyclopentadienyl ring and the carbon atoms of one end-on and two bridging carbonyl groups. The Ru atoms are connected via the bridging carbonyl groups into dimers, which are located on centres of inversion. The Ru1 Cg1 distance is 1.9151 Å, where Cg1 is the centroid of the cyclopentadiene ring. The Ru—Ru bond distance of 2.7483 (11) Å] agree with that observed in analogous structures (2.7510 (10) Å; Schumann et al., 2002) The two cyclopentadienyl rings are parallel and the two briding carbonyl groups exhibit a trans conformation.

Experimental

A solution of C5Me4C5H5O(0.285 g, 1.41 mmol) and Ru3(CO)12 (0.3 g, 0.47 mmol) in xylene (30 ml) was refluxed for 12 h. The solvent was removed under vacuum and the residue was chromatographed on an Al2O3 column using petroleum ether/CH2Cl2 (1:8) as eluent. The red band was collected and after several days red crystals were obtained (yield 0.189 g, 37.4%). Analysis calculated for Ru2C32H34O6: C 53.62, H 4.78%; found: C 53.59, H 4.80%.

Refinement

The H atoms were positioned with idealized geometry [C—H = 0.93 Å (0.96 Å for methy H atoms) and were refined using a riding model with Uiso(H) =1.2Ueq(C)] (1.5 for methyl H atoms).

Figures

Fig. 1.
The structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level (symmetry code: i=-x+1,-y,-z).

Crystal data

[Ru2(C14H17O)2(CO)4]F(000) = 724
Mr = 716.73Dx = 1.650 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1828 reflections
a = 8.504 (3) Åθ = 5.5–24.8°
b = 16.978 (7) ŵ = 1.09 mm1
c = 10.223 (4) ÅT = 273 K
β = 102.220 (6)°Prism, red
V = 1442.5 (10) Å30.15 × 0.11 × 0.08 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2552 independent reflections
Radiation source: fine-focus sealed tube2448 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −10→9
Tmin = 0.854, Tmax = 0.918k = −19→20
7123 measured reflectionsl = −9→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.28w = 1/[σ2(Fo2) + (0.0263P)2 + 2.646P] where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = −0.74 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ru10.51265 (3)0.030918 (17)0.12603 (3)0.02286 (12)
O10.1922 (3)0.0424 (2)−0.0644 (3)0.0433 (8)
O20.6179 (5)0.1919 (2)0.0632 (4)0.0637 (11)
O30.2618 (4)0.15332 (18)0.3848 (3)0.0422 (7)
C10.3276 (5)0.0237 (2)−0.0361 (4)0.0285 (8)
C20.5750 (5)0.1294 (3)0.0811 (4)0.0353 (9)
C30.3747 (5)0.0432 (2)0.2912 (4)0.0286 (8)
C40.5421 (5)0.0615 (2)0.3412 (4)0.0280 (8)
C50.6327 (5)−0.0087 (2)0.3353 (4)0.0286 (8)
C60.5228 (5)−0.0684 (2)0.2787 (4)0.0288 (8)
C70.3654 (5)−0.0376 (2)0.2524 (4)0.0299 (8)
C80.2398 (5)0.0956 (2)0.2882 (4)0.0330 (9)
C90.0903 (5)0.1014 (3)0.2136 (5)0.0506 (12)
H90.04430.06950.14170.061*
C100.0163 (6)0.1652 (3)0.2653 (6)0.0559 (14)
H10−0.08790.18320.23270.067*
C110.1194 (6)0.1946 (3)0.3670 (5)0.0486 (12)
C120.1170 (9)0.2592 (4)0.4635 (7)0.082 (2)
H12A0.02220.29060.43420.122*
H12B0.21080.29150.46880.122*
H12C0.11650.23740.55010.122*
C130.6112 (6)0.1365 (3)0.4048 (4)0.0416 (10)
H13A0.55330.18030.35850.062*
H13B0.72250.14010.40000.062*
H13C0.60210.13730.49680.062*
C140.8093 (5)−0.0180 (3)0.3875 (5)0.0416 (10)
H14A0.8298−0.02770.48220.062*
H14B0.86370.02920.37050.062*
H14C0.8480−0.06170.34360.062*
C150.5671 (6)−0.1531 (3)0.2627 (5)0.0451 (11)
H15A0.5814−0.17940.34750.068*
H15B0.6654−0.15550.23090.068*
H15C0.4827−0.17850.19940.068*
C160.2141 (6)−0.0843 (3)0.2052 (5)0.0474 (11)
H16A0.1693−0.07180.11320.071*
H16B0.1377−0.07150.25880.071*
H16C0.2385−0.13950.21320.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.02253 (18)0.02590 (19)0.02035 (18)−0.00050 (11)0.00502 (12)−0.00010 (11)
O10.0261 (16)0.065 (2)0.0381 (17)0.0129 (14)0.0044 (13)−0.0035 (15)
O20.091 (3)0.0361 (19)0.060 (2)−0.0199 (19)0.007 (2)0.0109 (16)
O30.0409 (17)0.0434 (17)0.0429 (18)0.0105 (14)0.0103 (14)−0.0034 (14)
C10.031 (2)0.032 (2)0.0239 (19)0.0003 (16)0.0086 (16)0.0000 (15)
C20.040 (2)0.037 (2)0.026 (2)−0.0032 (18)0.0023 (17)0.0005 (17)
C30.029 (2)0.035 (2)0.0244 (19)0.0005 (16)0.0114 (15)0.0021 (16)
C40.0233 (18)0.039 (2)0.0216 (19)−0.0025 (16)0.0054 (15)0.0040 (16)
C50.030 (2)0.035 (2)0.0228 (19)0.0011 (16)0.0091 (15)0.0037 (15)
C60.034 (2)0.031 (2)0.0224 (19)0.0012 (16)0.0085 (16)0.0035 (15)
C70.031 (2)0.035 (2)0.0239 (19)−0.0062 (16)0.0073 (16)0.0026 (16)
C80.031 (2)0.042 (2)0.030 (2)0.0006 (18)0.0151 (17)0.0002 (18)
C90.031 (2)0.076 (4)0.046 (3)0.006 (2)0.008 (2)−0.009 (2)
C100.039 (3)0.074 (4)0.059 (3)0.021 (3)0.021 (2)0.013 (3)
C110.048 (3)0.050 (3)0.053 (3)0.020 (2)0.024 (2)0.009 (2)
C120.087 (5)0.065 (4)0.097 (5)0.034 (3)0.029 (4)−0.013 (4)
C130.046 (3)0.043 (3)0.035 (2)−0.011 (2)0.0085 (19)−0.0113 (19)
C140.028 (2)0.058 (3)0.036 (2)0.0045 (19)0.0018 (18)0.008 (2)
C150.060 (3)0.033 (2)0.042 (3)0.006 (2)0.009 (2)0.0045 (19)
C160.039 (3)0.048 (3)0.053 (3)−0.019 (2)0.006 (2)0.001 (2)

Geometric parameters (Å, °)

Ru1—C21.842 (4)C7—C161.502 (6)
Ru1—C1i2.020 (4)C8—C91.341 (6)
Ru1—C12.033 (4)C9—C101.410 (7)
Ru1—C42.222 (4)C9—H90.9300
Ru1—C32.260 (4)C10—C111.310 (8)
Ru1—C52.268 (4)C10—H100.9300
Ru1—C62.286 (4)C11—C121.477 (8)
Ru1—C72.297 (4)C12—H12A0.9600
Ru1—Ru1i2.7483 (11)C12—H12B0.9600
O1—C11.170 (5)C12—H12C0.9600
O2—C21.149 (5)C13—H13A0.9600
O3—C81.376 (5)C13—H13B0.9600
O3—C111.378 (5)C13—H13C0.9600
C1—Ru1i2.020 (4)C14—H14A0.9600
C3—C71.425 (5)C14—H14B0.9600
C3—C41.441 (5)C14—H14C0.9600
C3—C81.447 (6)C15—H15A0.9600
C4—C51.427 (6)C15—H15B0.9600
C4—C131.492 (6)C15—H15C0.9600
C5—C61.416 (6)C16—H16A0.9600
C5—C141.493 (6)C16—H16B0.9600
C6—C71.409 (6)C16—H16C0.9600
C6—C151.506 (6)
C2—Ru1—C1i92.69 (17)C4—C5—Ru169.7 (2)
C2—Ru1—C193.75 (17)C14—C5—Ru1125.9 (3)
C1i—Ru1—C194.61 (16)C7—C6—C5109.3 (3)
C2—Ru1—C493.23 (16)C7—C6—C15125.7 (4)
C1i—Ru1—C4127.74 (15)C5—C6—C15124.7 (4)
C1—Ru1—C4136.60 (15)C7—C6—Ru172.5 (2)
C2—Ru1—C3108.97 (17)C5—C6—Ru171.2 (2)
C1i—Ru1—C3152.57 (15)C15—C6—Ru1127.2 (3)
C1—Ru1—C3100.37 (15)C6—C7—C3108.0 (3)
C4—Ru1—C337.50 (14)C6—C7—C16125.5 (4)
C2—Ru1—C5114.09 (16)C3—C7—C16126.2 (4)
C1i—Ru1—C594.66 (15)C6—C7—Ru171.7 (2)
C1—Ru1—C5150.13 (15)C3—C7—Ru170.4 (2)
C4—Ru1—C537.04 (14)C16—C7—Ru1128.2 (3)
C3—Ru1—C561.57 (14)C9—C8—O3108.9 (4)
C2—Ru1—C6150.26 (16)C9—C8—C3135.1 (4)
C1i—Ru1—C692.30 (15)O3—C8—C3115.9 (4)
C1—Ru1—C6115.03 (15)C8—C9—C10106.7 (5)
C4—Ru1—C661.08 (14)C8—C9—H9126.6
C3—Ru1—C660.55 (14)C10—C9—H9126.6
C5—Ru1—C636.24 (14)C11—C10—C9108.3 (4)
C2—Ru1—C7145.09 (17)C11—C10—H10125.8
C1i—Ru1—C7121.50 (15)C9—C10—H10125.8
C1—Ru1—C790.47 (15)C10—C11—O3109.4 (4)
C4—Ru1—C761.45 (14)C10—C11—C12135.4 (5)
C3—Ru1—C736.42 (14)O3—C11—C12115.2 (5)
C5—Ru1—C760.63 (14)C11—C12—H12A109.5
C6—Ru1—C735.80 (14)C11—C12—H12B109.5
C2—Ru1—Ru1i94.75 (13)H12A—C12—H12B109.5
C1i—Ru1—Ru1i47.51 (11)C11—C12—H12C109.5
C1—Ru1—Ru1i47.10 (11)H12A—C12—H12C109.5
C4—Ru1—Ru1i170.90 (11)H12B—C12—H12C109.5
C3—Ru1—Ru1i141.76 (10)C4—C13—H13A109.5
C5—Ru1—Ru1i134.53 (10)C4—C13—H13B109.5
C6—Ru1—Ru1i110.03 (10)H13A—C13—H13B109.5
C7—Ru1—Ru1i112.96 (10)C4—C13—H13C109.5
C8—O3—C11106.6 (4)H13A—C13—H13C109.5
O1—C1—Ru1i137.2 (3)H13B—C13—H13C109.5
O1—C1—Ru1137.4 (3)C5—C14—H14A109.5
Ru1i—C1—Ru185.39 (16)C5—C14—H14B109.5
O2—C2—Ru1174.9 (4)H14A—C14—H14B109.5
C7—C3—C4107.4 (3)C5—C14—H14C109.5
C7—C3—C8126.1 (4)H14A—C14—H14C109.5
C4—C3—C8126.4 (4)H14B—C14—H14C109.5
C7—C3—Ru173.2 (2)C6—C15—H15A109.5
C4—C3—Ru169.8 (2)C6—C15—H15B109.5
C8—C3—Ru1125.1 (3)H15A—C15—H15B109.5
C5—C4—C3107.8 (3)C6—C15—H15C109.5
C5—C4—C13124.4 (4)H15A—C15—H15C109.5
C3—C4—C13127.4 (4)H15B—C15—H15C109.5
C5—C4—Ru173.2 (2)C7—C16—H16A109.5
C3—C4—Ru172.7 (2)C7—C16—H16B109.5
C13—C4—Ru1125.6 (3)H16A—C16—H16B109.5
C6—C5—C4107.4 (3)C7—C16—H16C109.5
C6—C5—C14126.7 (4)H16A—C16—H16C109.5
C4—C5—C14125.8 (4)H16B—C16—H16C109.5
C6—C5—Ru172.6 (2)
C2—Ru1—C1—O1−87.0 (5)C6—Ru1—C5—C4−116.8 (3)
C1i—Ru1—C1—O1180.0 (6)C7—Ru1—C5—C4−80.5 (2)
C4—Ru1—C1—O111.7 (6)Ru1i—Ru1—C5—C4−174.79 (17)
C3—Ru1—C1—O123.0 (5)C2—Ru1—C5—C14−59.5 (4)
C5—Ru1—C1—O172.3 (6)C1i—Ru1—C5—C1435.5 (4)
C6—Ru1—C1—O185.3 (5)C1—Ru1—C5—C14143.2 (4)
C7—Ru1—C1—O158.3 (5)C4—Ru1—C5—C14−120.2 (5)
Ru1i—Ru1—C1—O1180.0 (6)C3—Ru1—C5—C14−158.9 (4)
C2—Ru1—C1—Ru1i93.01 (17)C6—Ru1—C5—C14123.1 (5)
C1i—Ru1—C1—Ru1i0.0C7—Ru1—C5—C14159.3 (4)
C4—Ru1—C1—Ru1i−168.28 (16)Ru1i—Ru1—C5—C1465.0 (4)
C3—Ru1—C1—Ru1i−156.93 (13)C4—C5—C6—C7−1.5 (4)
C5—Ru1—C1—Ru1i−107.7 (3)C14—C5—C6—C7174.9 (4)
C6—Ru1—C1—Ru1i−94.71 (15)Ru1—C5—C6—C7−62.9 (3)
C7—Ru1—C1—Ru1i−121.66 (14)C4—C5—C6—C15−175.8 (4)
C1i—Ru1—C2—O2−115 (5)C14—C5—C6—C150.5 (6)
C1—Ru1—C2—O2150 (5)Ru1—C5—C6—C15122.8 (4)
C4—Ru1—C2—O213 (5)C4—C5—C6—Ru161.4 (2)
C3—Ru1—C2—O248 (5)C14—C5—C6—Ru1−122.2 (4)
C5—Ru1—C2—O2−19 (5)C2—Ru1—C6—C7113.5 (4)
C6—Ru1—C2—O2−16 (5)C1i—Ru1—C6—C7−147.0 (2)
C7—Ru1—C2—O254 (5)C1—Ru1—C6—C7−50.8 (3)
Ru1i—Ru1—C2—O2−163 (5)C4—Ru1—C6—C780.4 (2)
C2—Ru1—C3—C7174.1 (2)C3—Ru1—C6—C737.2 (2)
C1i—Ru1—C3—C7−45.5 (4)C5—Ru1—C6—C7118.3 (3)
C1—Ru1—C3—C776.5 (2)Ru1i—Ru1—C6—C7−101.8 (2)
C4—Ru1—C3—C7−116.4 (3)C2—Ru1—C6—C5−4.8 (4)
C5—Ru1—C3—C7−78.1 (2)C1i—Ru1—C6—C594.7 (2)
C6—Ru1—C3—C7−36.5 (2)C1—Ru1—C6—C5−169.1 (2)
Ru1i—Ru1—C3—C748.8 (3)C4—Ru1—C6—C5−37.9 (2)
C2—Ru1—C3—C4−69.5 (3)C3—Ru1—C6—C5−81.1 (2)
C1i—Ru1—C3—C470.8 (4)C7—Ru1—C6—C5−118.3 (3)
C1—Ru1—C3—C4−167.2 (2)Ru1i—Ru1—C6—C5139.9 (2)
C5—Ru1—C3—C438.2 (2)C2—Ru1—C6—C15−124.6 (4)
C6—Ru1—C3—C479.8 (2)C1i—Ru1—C6—C15−25.1 (4)
C7—Ru1—C3—C4116.4 (3)C1—Ru1—C6—C1571.1 (4)
Ru1i—Ru1—C3—C4165.20 (18)C4—Ru1—C6—C15−157.7 (4)
C2—Ru1—C3—C851.4 (4)C3—Ru1—C6—C15159.1 (4)
C1i—Ru1—C3—C8−168.2 (3)C5—Ru1—C6—C15−119.8 (5)
C1—Ru1—C3—C8−46.2 (4)C7—Ru1—C6—C15121.9 (5)
C4—Ru1—C3—C8121.0 (4)Ru1i—Ru1—C6—C1520.1 (4)
C5—Ru1—C3—C8159.2 (4)C5—C6—C7—C30.7 (4)
C6—Ru1—C3—C8−159.2 (4)C15—C6—C7—C3175.0 (4)
C7—Ru1—C3—C8−122.7 (5)Ru1—C6—C7—C3−61.4 (3)
Ru1i—Ru1—C3—C8−73.8 (4)C5—C6—C7—C16−173.6 (4)
C7—C3—C4—C5−1.3 (4)C15—C6—C7—C160.7 (7)
C8—C3—C4—C5175.3 (4)Ru1—C6—C7—C16124.3 (4)
Ru1—C3—C4—C5−65.3 (3)C5—C6—C7—Ru162.1 (3)
C7—C3—C4—C13−174.0 (4)C15—C6—C7—Ru1−123.7 (4)
C8—C3—C4—C132.6 (6)C4—C3—C7—C60.4 (4)
Ru1—C3—C4—C13121.9 (4)C8—C3—C7—C6−176.3 (4)
C7—C3—C4—Ru164.0 (3)Ru1—C3—C7—C662.2 (3)
C8—C3—C4—Ru1−119.4 (4)C4—C3—C7—C16174.6 (4)
C2—Ru1—C4—C5−127.1 (3)C8—C3—C7—C16−2.0 (7)
C1i—Ru1—C4—C5−31.2 (3)Ru1—C3—C7—C16−123.6 (4)
C1—Ru1—C4—C5133.9 (2)C4—C3—C7—Ru1−61.8 (2)
C3—Ru1—C4—C5115.4 (3)C8—C3—C7—Ru1121.6 (4)
C6—Ru1—C4—C537.1 (2)C2—Ru1—C7—C6−127.4 (3)
C7—Ru1—C4—C578.1 (2)C1i—Ru1—C7—C639.7 (3)
Ru1i—Ru1—C4—C524.2 (7)C1—Ru1—C7—C6135.4 (2)
C2—Ru1—C4—C3117.5 (3)C4—Ru1—C7—C6−79.2 (2)
C1i—Ru1—C4—C3−146.6 (2)C3—Ru1—C7—C6−117.6 (3)
C1—Ru1—C4—C318.5 (3)C5—Ru1—C7—C6−36.7 (2)
C5—Ru1—C4—C3−115.4 (3)Ru1i—Ru1—C7—C692.8 (2)
C6—Ru1—C4—C3−78.3 (2)C2—Ru1—C7—C3−9.7 (4)
C7—Ru1—C4—C3−37.3 (2)C1i—Ru1—C7—C3157.3 (2)
Ru1i—Ru1—C4—C3−91.2 (6)C1—Ru1—C7—C3−107.0 (2)
C2—Ru1—C4—C13−6.5 (4)C4—Ru1—C7—C338.4 (2)
C1i—Ru1—C4—C1389.4 (4)C5—Ru1—C7—C380.9 (2)
C1—Ru1—C4—C13−105.4 (4)C6—Ru1—C7—C3117.6 (3)
C3—Ru1—C4—C13−124.0 (5)Ru1i—Ru1—C7—C3−149.6 (2)
C5—Ru1—C4—C13120.6 (4)C2—Ru1—C7—C16111.5 (4)
C6—Ru1—C4—C13157.7 (4)C1i—Ru1—C7—C16−81.5 (4)
C7—Ru1—C4—C13−161.3 (4)C1—Ru1—C7—C1614.2 (4)
Ru1i—Ru1—C4—C13144.8 (5)C4—Ru1—C7—C16159.6 (4)
C3—C4—C5—C61.7 (4)C3—Ru1—C7—C16121.2 (5)
C13—C4—C5—C6174.7 (4)C5—Ru1—C7—C16−157.8 (4)
Ru1—C4—C5—C6−63.2 (3)C6—Ru1—C7—C16−121.2 (5)
C3—C4—C5—C14−174.7 (4)Ru1i—Ru1—C7—C16−28.4 (4)
C13—C4—C5—C14−1.7 (6)C11—O3—C8—C90.3 (5)
Ru1—C4—C5—C14120.3 (4)C11—O3—C8—C3−178.2 (4)
C3—C4—C5—Ru164.9 (3)C7—C3—C8—C9−29.6 (8)
C13—C4—C5—Ru1−122.0 (4)C4—C3—C8—C9154.4 (5)
C2—Ru1—C5—C6177.4 (2)Ru1—C3—C8—C964.7 (7)
C1i—Ru1—C5—C6−87.5 (2)C7—C3—C8—O3148.4 (4)
C1—Ru1—C5—C620.2 (4)C4—C3—C8—O3−27.6 (6)
C4—Ru1—C5—C6116.8 (3)Ru1—C3—C8—O3−117.3 (3)
C3—Ru1—C5—C678.0 (2)O3—C8—C9—C100.1 (5)
C7—Ru1—C5—C636.2 (2)C3—C8—C9—C10178.2 (5)
Ru1i—Ru1—C5—C6−58.0 (3)C8—C9—C10—C11−0.6 (6)
C2—Ru1—C5—C460.7 (3)C9—C10—C11—O30.7 (6)
C1i—Ru1—C5—C4155.7 (2)C9—C10—C11—C12−178.8 (6)
C1—Ru1—C5—C4−96.6 (3)C8—O3—C11—C10−0.6 (5)
C3—Ru1—C5—C4−38.7 (2)C8—O3—C11—C12179.0 (5)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2148).

References

  • Arndt, S. O. (2002). J. Chem. Rev.102, 1953–1976. [PubMed]
  • Bailey, N. A., Radford, S. L., Sanderson, J. A., Tabatabaian, K., White, C. & Worthington, J. A. (1978). J. Organomet. Chem.154, 343–351.
  • Bruker (1998). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • King, R. B. (1976). Coord. Chem. Rev.20, 155–169.
  • Möhring, P. C. & Coville, N. J. (2006). Coord. Chem. Rev.250, 18–35.
  • Schumann, H., Stenz, S., Girgsdies, F. & Mühle, S. (2002). Z. Naturforsch. Teil B, 57, 1017–1026.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography