PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1765.
Published online 2009 July 4. doi:  10.1107/S1600536809024878
PMCID: PMC2977124

t-3-Ethyl-r-2,c-6-bis­(4-methoxy­phen­yl)-1-nitro­sopiperidin-4-one

Abstract

In the title mol­ecule, C21H24N2O4, the piperidine ring adopts a distorted boat conformation with the ethyl substituent in the axial position. The dihedral angle between the two benzene rings is 70.25 (9)°. An intra­molecular C—H(...)O inter­action is observed. In the crystal, mol­ecules are linked into a chain along the c axis by C—H(...)O hydrogen bonds and the chains are linked via weak C—H(...)π inter­actions.

Related literature

For general background to 4-piperidones, see: Wang et al. (1992 [triangle]); Grishina et al. (1994 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1765-scheme1.jpg

Experimental

Crystal data

  • C21H24N2O4
  • M r = 368.42
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1765-efi1.jpg
  • a = 7.2742 (4) Å
  • b = 15.8459 (7) Å
  • c = 16.4800 (7) Å
  • V = 1899.59 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.978, T max = 0.982
  • 15051 measured reflections
  • 3334 independent reflections
  • 2550 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.107
  • S = 1.02
  • 3334 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024878/ci2810sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024878/ci2810Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Piperidine derivatives, namely 4-piperidones, are synthetic intermediates in the preparation of various alkaloids and pharmaceutical products (Wang et al., 1992; Grishina et al., 1994).

The piperidine ring adopts a distorted boat conformation, with the ethyl substituent at C3 position in the axial orientation. The puckering parameters for the piperidine ring are q2 = 0.591 (2) Å, q3 = 0.097 (2) Å, QT = 0.599 (2) Å and [var phi]2 = 73.2 (2)° (Cremer & Pople, 1975). The dihedral angle between the two benzene rings is 70.25 (9)°. The sum of the bond angles around N1 (359°) indicates sp2 hybridization. An intramolecular C—H···O interaction is observed.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1) which link the molecules into a chain along the c axis. The chains are linked via C—H···π interactions involving the C16-C21 ring.

Experimental

To a solution of t-3-ethyl-r-2,c-6-bis(4-methoxyphenyl)piperidin-4-one (1.69 g, 5 mmol) in chloroform (10 ml) was added conc. HCl (1.5 ml) and water (1.5 ml) and while stirring, solid NaNO2 (0.84 g,12 mmol) was added in portions during 0.5 h. The solution was stirred at room temperature for another 0.5 h. The organic layer was washed with water, saturated aqueous NaHCO3 and dried over anhydrous Na2SO4. The resulting solution was concentrated and the residue was crystallized from ethanol.

Refinement

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C). In the absence of significant anomalous scattering effects, the Fridel pairs were averaged.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
The molecular packing of the title compound, viewed approximately along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C21H24N2O4F(000) = 784
Mr = 368.42Dx = 1.288 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3334 reflections
a = 7.2742 (4) Åθ = 2.5–31.8°
b = 15.8459 (7) ŵ = 0.09 mm1
c = 16.4800 (7) ÅT = 293 K
V = 1899.59 (16) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer3334 independent reflections
Radiation source: fine-focus sealed tube2550 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 31.8°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −10→10
Tmin = 0.978, Tmax = 0.982k = −23→16
15051 measured reflectionsl = −15→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1347P] where P = (Fo2 + 2Fc2)/3
3334 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.2631 (2)0.06968 (12)0.09708 (10)0.0722 (5)
O20.56881 (19)0.08201 (12)0.27581 (11)0.0648 (4)
O31.2829 (2)−0.26039 (11)0.42094 (11)0.0677 (5)
O40.96286 (19)0.17870 (9)0.59490 (8)0.0480 (3)
N10.82220 (18)0.02169 (10)0.24151 (9)0.0379 (3)
C20.9060 (2)−0.04979 (11)0.19832 (11)0.0394 (4)
H20.8044−0.08520.17920.047*
C31.0038 (3)−0.01651 (12)0.12220 (12)0.0431 (4)
H31.0693−0.06330.09620.052*
C41.1403 (3)0.05176 (12)0.14271 (12)0.0439 (4)
C51.1176 (2)0.09628 (12)0.22290 (12)0.0406 (4)
H5A1.16240.15360.21660.049*
H5B1.19670.06860.26210.049*
C60.9234 (2)0.10068 (11)0.25901 (11)0.0361 (4)
H60.85830.14690.23190.043*
N70.6402 (2)0.01792 (13)0.24877 (11)0.0523 (4)
C81.0192 (2)−0.10403 (10)0.25549 (12)0.0383 (4)
C91.2088 (3)−0.11160 (12)0.25259 (13)0.0452 (4)
H91.2747−0.08220.21340.054*
C101.3015 (3)−0.16248 (13)0.30744 (13)0.0496 (5)
H101.4290−0.16640.30510.060*
C111.2061 (3)−0.20718 (12)0.36542 (13)0.0484 (5)
C121.0155 (3)−0.20026 (13)0.36894 (14)0.0516 (5)
H120.9496−0.23030.40770.062*
C130.9252 (3)−0.14900 (12)0.31510 (13)0.0473 (5)
H130.7980−0.14410.31840.057*
C160.9304 (2)0.12116 (10)0.34877 (11)0.0351 (4)
C171.0182 (2)0.06863 (11)0.40442 (12)0.0407 (4)
H171.07120.01860.38650.049*
C181.0279 (2)0.08954 (12)0.48551 (11)0.0411 (4)
H181.08710.05370.52180.049*
C190.9491 (2)0.16428 (11)0.51316 (11)0.0373 (4)
C200.8647 (3)0.21793 (12)0.45857 (11)0.0415 (4)
H200.81420.26860.47620.050*
C210.8557 (2)0.19574 (11)0.37750 (12)0.0402 (4)
H210.79770.23200.34120.048*
C221.4718 (4)−0.28172 (19)0.41023 (18)0.0810 (8)
H22A1.5095−0.31960.45250.122*
H22B1.5451−0.23140.41250.122*
H22C1.4881−0.30850.35850.122*
C230.8815 (3)0.25378 (15)0.62544 (14)0.0602 (6)
H23A0.89980.25670.68310.090*
H23B0.75210.25350.61390.090*
H23C0.93750.30190.60000.090*
C140.8639 (4)0.02004 (17)0.06142 (14)0.0644 (6)
H14A0.7562−0.01600.06040.077*
H14B0.82550.07530.08020.077*
C150.9381 (5)0.0281 (2)−0.02394 (16)0.0977 (10)
H15A0.84460.0512−0.05860.147*
H15B0.9737−0.0265−0.04360.147*
H15C1.04300.0649−0.02380.147*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0685 (10)0.0868 (12)0.0614 (10)−0.0296 (9)0.0256 (9)−0.0182 (9)
O20.0365 (7)0.0822 (10)0.0758 (11)0.0125 (7)−0.0027 (7)−0.0142 (10)
O30.0698 (10)0.0673 (10)0.0660 (10)0.0246 (8)0.0030 (9)0.0130 (9)
O40.0508 (8)0.0563 (8)0.0369 (7)0.0020 (6)−0.0037 (6)−0.0045 (6)
N10.0286 (6)0.0435 (7)0.0416 (8)−0.0018 (6)−0.0024 (6)−0.0043 (7)
C20.0366 (8)0.0379 (8)0.0436 (10)−0.0058 (7)−0.0018 (7)−0.0076 (8)
C30.0489 (10)0.0419 (8)0.0386 (10)−0.0050 (8)0.0007 (8)−0.0061 (8)
C40.0426 (9)0.0461 (9)0.0429 (10)−0.0062 (8)0.0033 (8)−0.0022 (9)
C50.0368 (8)0.0413 (9)0.0437 (10)−0.0063 (7)0.0010 (7)−0.0054 (8)
C60.0340 (7)0.0357 (8)0.0384 (10)0.0006 (6)−0.0017 (7)−0.0023 (8)
N70.0310 (7)0.0675 (11)0.0585 (11)−0.0007 (8)−0.0035 (7)−0.0043 (9)
C80.0381 (8)0.0340 (8)0.0427 (10)−0.0032 (6)0.0031 (7)−0.0075 (8)
C90.0404 (9)0.0447 (10)0.0505 (11)−0.0009 (7)0.0062 (8)−0.0027 (9)
C100.0394 (9)0.0521 (10)0.0574 (13)0.0091 (8)0.0038 (9)−0.0057 (10)
C110.0527 (11)0.0431 (9)0.0495 (12)0.0111 (8)−0.0008 (9)−0.0020 (10)
C120.0532 (11)0.0494 (10)0.0521 (12)−0.0015 (9)0.0085 (10)0.0030 (10)
C130.0387 (9)0.0458 (10)0.0573 (13)−0.0034 (8)0.0039 (9)−0.0017 (10)
C160.0296 (7)0.0377 (8)0.0381 (9)0.0008 (6)−0.0025 (6)−0.0011 (8)
C170.0403 (9)0.0364 (8)0.0455 (10)0.0067 (7)−0.0038 (8)−0.0025 (8)
C180.0395 (9)0.0412 (9)0.0426 (10)0.0027 (7)−0.0063 (7)0.0049 (8)
C190.0309 (7)0.0441 (9)0.0369 (9)−0.0032 (7)−0.0008 (7)−0.0033 (8)
C200.0413 (9)0.0393 (8)0.0439 (10)0.0085 (7)−0.0012 (8)−0.0052 (8)
C210.0381 (9)0.0403 (8)0.0422 (10)0.0093 (7)−0.0046 (7)0.0011 (8)
C220.0746 (17)0.0949 (19)0.0736 (17)0.0407 (15)−0.0056 (14)0.0020 (16)
C230.0586 (12)0.0756 (14)0.0465 (12)0.0077 (11)0.0004 (10)−0.0187 (12)
C140.0659 (13)0.0755 (15)0.0517 (13)−0.0138 (12)−0.0142 (11)0.0046 (12)
C150.117 (3)0.129 (3)0.0469 (15)−0.005 (2)−0.0102 (16)0.0193 (18)

Geometric parameters (Å, °)

O1—C41.202 (2)C11—C121.392 (3)
O2—N71.225 (2)C12—C131.370 (3)
O3—C111.364 (3)C12—H120.93
O3—C221.426 (3)C13—H130.93
O4—C191.370 (2)C16—C211.384 (2)
O4—C231.421 (2)C16—C171.394 (2)
N1—N71.331 (2)C17—C181.379 (3)
N1—C21.470 (2)C17—H170.93
N1—C61.481 (2)C18—C191.392 (3)
C2—C81.518 (3)C18—H180.93
C2—C31.536 (3)C19—C201.382 (3)
C2—H20.98C20—C211.383 (3)
C3—C41.506 (3)C20—H200.93
C3—C141.541 (3)C21—H210.93
C3—H30.98C22—H22A0.96
C4—C51.507 (3)C22—H22B0.96
C5—C61.535 (2)C22—H22C0.96
C5—H5A0.97C23—H23A0.96
C5—H5B0.97C23—H23B0.96
C6—C161.515 (3)C23—H23C0.96
C6—H60.98C14—C151.512 (4)
C8—C91.385 (3)C14—H14A0.97
C8—C131.393 (3)C14—H14B0.97
C9—C101.386 (3)C15—H15A0.96
C9—H90.93C15—H15B0.96
C10—C111.377 (3)C15—H15C0.96
C10—H100.93
C11—O3—C22117.3 (2)C11—C12—H12120.1
C19—O4—C23117.23 (16)C12—C13—C8121.65 (18)
N7—N1—C2114.93 (15)C12—C13—H13119.2
N7—N1—C6121.01 (16)C8—C13—H13119.2
C2—N1—C6122.65 (13)C21—C16—C17117.70 (17)
N1—C2—C8111.15 (14)C21—C16—C6120.23 (15)
N1—C2—C3108.85 (14)C17—C16—C6122.00 (15)
C8—C2—C3116.74 (15)C18—C17—C16121.19 (16)
N1—C2—H2106.5C18—C17—H17119.4
C8—C2—H2106.5C16—C17—H17119.4
C3—C2—H2106.5C17—C18—C19120.04 (17)
C4—C3—C2111.62 (15)C17—C18—H18120.0
C4—C3—C14108.13 (17)C19—C18—H18120.0
C2—C3—C14110.74 (17)O4—C19—C20124.75 (17)
C4—C3—H3108.8O4—C19—C18115.70 (16)
C2—C3—H3108.8C20—C19—C18119.55 (17)
C14—C3—H3108.8C19—C20—C21119.58 (16)
O1—C4—C3121.27 (18)C19—C20—H20120.2
O1—C4—C5121.28 (17)C21—C20—H20120.2
C3—C4—C5117.44 (16)C20—C21—C16121.92 (17)
C4—C5—C6117.51 (15)C20—C21—H21119.0
C4—C5—H5A107.9C16—C21—H21119.0
C6—C5—H5A107.9O3—C22—H22A109.5
C4—C5—H5B107.9O3—C22—H22B109.5
C6—C5—H5B107.9H22A—C22—H22B109.5
H5A—C5—H5B107.2O3—C22—H22C109.5
N1—C6—C16112.83 (15)H22A—C22—H22C109.5
N1—C6—C5110.11 (14)H22B—C22—H22C109.5
C16—C6—C5110.94 (14)O4—C23—H23A109.5
N1—C6—H6107.6O4—C23—H23B109.5
C16—C6—H6107.6H23A—C23—H23B109.5
C5—C6—H6107.6O4—C23—H23C109.5
O2—N7—N1114.66 (17)H23A—C23—H23C109.5
C9—C8—C13117.96 (18)H23B—C23—H23C109.5
C9—C8—C2124.60 (17)C15—C14—C3113.7 (2)
C13—C8—C2117.44 (16)C15—C14—H14A108.8
C8—C9—C10120.83 (19)C3—C14—H14A108.8
C8—C9—H9119.6C15—C14—H14B108.8
C10—C9—H9119.6C3—C14—H14B108.8
C11—C10—C9120.40 (18)H14A—C14—H14B107.7
C11—C10—H10119.8C14—C15—H15A109.5
C9—C10—H10119.8C14—C15—H15B109.5
O3—C11—C10125.24 (18)H15A—C15—H15B109.5
O3—C11—C12115.4 (2)C14—C15—H15C109.5
C10—C11—C12119.37 (19)H15A—C15—H15C109.5
C13—C12—C11119.8 (2)H15B—C15—H15C109.5
C13—C12—H12120.1
N7—N1—C2—C8−111.25 (18)C8—C9—C10—C110.7 (3)
C6—N1—C2—C882.2 (2)C22—O3—C11—C10−10.4 (3)
N7—N1—C2—C3118.82 (18)C22—O3—C11—C12168.6 (2)
C6—N1—C2—C3−47.7 (2)C9—C10—C11—O3178.42 (19)
N1—C2—C3—C454.76 (19)C9—C10—C11—C12−0.6 (3)
C8—C2—C3—C4−72.04 (19)O3—C11—C12—C13−179.33 (18)
N1—C2—C3—C14−65.78 (19)C10—C11—C12—C13−0.2 (3)
C8—C2—C3—C14167.43 (16)C11—C12—C13—C81.0 (3)
C2—C3—C4—O1159.7 (2)C9—C8—C13—C12−0.9 (3)
C14—C3—C4—O1−78.2 (3)C2—C8—C13—C12179.36 (17)
C2—C3—C4—C5−19.8 (2)N1—C6—C16—C21−119.97 (17)
C14—C3—C4—C5102.2 (2)C5—C6—C16—C21115.94 (18)
O1—C4—C5—C6153.2 (2)N1—C6—C16—C1763.0 (2)
C3—C4—C5—C6−27.2 (2)C5—C6—C16—C17−61.1 (2)
N7—N1—C6—C1672.0 (2)C21—C16—C17—C181.0 (3)
C2—N1—C6—C16−122.28 (17)C6—C16—C17—C18178.05 (17)
N7—N1—C6—C5−163.49 (17)C16—C17—C18—C190.0 (3)
C2—N1—C6—C52.3 (2)C23—O4—C19—C201.0 (3)
C4—C5—C6—N136.3 (2)C23—O4—C19—C18−179.06 (16)
C4—C5—C6—C16161.94 (15)C17—C18—C19—O4178.80 (17)
C2—N1—N7—O2−171.53 (17)C17—C18—C19—C20−1.3 (3)
C6—N1—N7—O2−4.7 (3)O4—C19—C20—C21−178.57 (18)
N1—C2—C8—C9−112.31 (19)C18—C19—C20—C211.5 (3)
C3—C2—C8—C913.3 (3)C19—C20—C21—C16−0.5 (3)
N1—C2—C8—C1367.46 (19)C17—C16—C21—C20−0.7 (3)
C3—C2—C8—C13−166.89 (16)C6—C16—C21—C20−177.86 (17)
C13—C8—C9—C100.0 (3)C4—C3—C14—C1575.9 (3)
C2—C8—C9—C10179.80 (17)C2—C3—C14—C15−161.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15C···O10.962.563.163 (4)121
C18—H18···O1i0.932.563.472 (3)167
C23—H23B···Cg1ii0.962.893.718 (2)144

Symmetry codes: (i) −x+5/2, −y, z+1/2; (ii) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2810).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Grishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd, 30, 1401–1426.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, C.-L. & Wuorola, M. A. (1992). Org. Prep. Proceed. Int.24, 585–621.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography