PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1974.
Published online 2009 July 25. doi:  10.1107/S1600536809028049
PMCID: PMC2977121

1-Acetyl-c-3,t-3-dimethyl-r-2,c-6-diphenyl­piperidin-4-one

Abstract

In the title compound, C21H23NO2, the piperidine ring adopts a distorted boat conformation. The two phenyl rings form dihedral angles of 64.6 (1) and 87.8 (1)° with the best plane through the piperidine ring. The crystal packing is governed by inter­molecular C—H(...)O inter­actions.

Related literature

For the biological activity of piperidine derivatives, see: Ponnuswamy et al. (2002 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For puckering and asymmetry parameters, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1974-scheme1.jpg

Experimental

Crystal data

  • C21H23NO2
  • M r = 321.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1974-efi1.jpg
  • a = 7.5622 (4) Å
  • b = 10.6369 (5) Å
  • c = 11.1497 (7) Å
  • β = 100.373 (3)°
  • V = 882.21 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.977, T max = 0.985
  • 12819 measured reflections
  • 3457 independent reflections
  • 2400 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.145
  • S = 1.02
  • 3457 reflections
  • 220 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028049/bt2989sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028049/bt2989Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SA thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

The design and synthesis of conformationally anchored molecules are important due its potency and selectivity for designing drugs. The piperidin-4-ones are one such class of compounds to be investigated to understand the stereodynamics and other structural features (Ponnuswamy et al., 2002). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. The piperidine ring adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.592 (2) Å, q3 = 0.116 (2) Å, π = 284.8 (2)° and Δs(C3) =Δs(C6)= 15.2 (2)°. The sum of the angles at N1 (359.03°) is in accrdance with sp2 hybridization. The two phenyl rings are twisted away from the best plane of the pyridine ring by 64.6 (1)° and 87.8 (1)°, respectively.

The crystal packing is controlled by C—H···O types of intra and intermolecular interactions in addition to van der Waals forces. Atom C8 at (x, y, z) donates a proton to O2 (1 - x,1/2 + y,-z), which forms a C(8) (Bernstein, et al., 1995) zigzag chain running along b axis shown in Fig. 2.

Experimental

A mixture of c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one (1.4 g, 5 mmol), acetyl chloride (0.7 ml, 10 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (50 ml) was stirred at room temparature for 7 h. The precipitated ammonium salt was filtered off and the filtrate was washed with water (4x10ml). The resulting pasty mass was purified and crystallized from benzene and pet-ether (60–80°C) in the ratio of 95: 5.

Refinement

In the absence of anomalous scatterers Friedel pairs were merged and the absolute configuration was arbitrarily set. All H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.
Perspective view of the molecule with displacement ellipsoids at the 50% probability level. The H atoms are omitted for clarity.
Fig. 2.
The crystal packing viewed down a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C21H23NO2F(000) = 344
Mr = 321.40Dx = 1.210 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3546 reflections
a = 7.5622 (4) Åθ = 1.9–34.8°
b = 10.6369 (5) ŵ = 0.08 mm1
c = 11.1497 (7) ÅT = 293 K
β = 100.373 (3)°Block, colorless
V = 882.21 (8) Å30.30 × 0.25 × 0.20 mm
Z = 2

Data collection

Bruker Kappa APEXII area-detector diffractometer3457 independent reflections
Radiation source: fine-focus sealed tube2400 reflections with I > 2σ(I)
graphiteRint = 0.042
ω and [var phi] scansθmax = 34.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −11→11
Tmin = 0.977, Tmax = 0.985k = −17→11
12819 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0853P)2] where P = (Fo2 + 2Fc2)/3
3457 reflections(Δ/σ)max = 0.012
220 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.0626 (2)0.57532 (19)0.23859 (18)0.0680 (5)
O20.4399 (3)0.3113 (2)−0.07440 (15)0.0763 (5)
N10.7953 (2)0.47573 (14)0.20329 (14)0.0393 (3)
C20.6053 (2)0.47297 (17)0.21592 (15)0.0392 (3)
H20.55380.55590.19280.047*
C30.4980 (3)0.3754 (2)0.13125 (18)0.0493 (4)
H3A0.50870.29520.17350.059*
H3B0.37220.39930.11870.059*
C40.5484 (3)0.3556 (2)0.00799 (18)0.0507 (5)
C50.7355 (3)0.3903 (2)−0.00532 (17)0.0492 (4)
C60.8617 (3)0.38858 (19)0.11952 (16)0.0414 (4)
H60.97590.42400.10550.050*
C70.9060 (3)0.57188 (19)0.25158 (18)0.0464 (4)
C80.8306 (4)0.6735 (2)0.3207 (2)0.0600 (5)
H8A0.73470.71550.26750.090*
H8B0.92340.73300.35090.090*
H8C0.78520.63710.38790.090*
C90.5778 (2)0.44554 (17)0.34515 (16)0.0406 (4)
C100.6819 (3)0.3583 (2)0.41885 (18)0.0508 (4)
H100.77590.31780.39120.061*
C110.6462 (4)0.3315 (2)0.5329 (2)0.0606 (6)
H110.71580.27260.58190.073*
C120.5085 (4)0.3913 (3)0.5744 (2)0.0670 (7)
H120.48510.37320.65170.080*
C130.4058 (4)0.4773 (3)0.5026 (3)0.0726 (7)
H130.31230.51750.53100.087*
C140.4399 (3)0.5051 (2)0.3878 (2)0.0571 (5)
H140.36960.56410.33930.069*
C150.7232 (4)0.5268 (2)−0.0542 (2)0.0616 (6)
H15A0.66990.5795−0.00050.092*
H15B0.65050.5286−0.13410.092*
H15C0.84160.5571−0.05810.092*
C160.8096 (4)0.3069 (3)−0.0963 (2)0.0699 (7)
H16A0.73730.3168−0.17580.105*
H16B0.80670.2206−0.07140.105*
H16C0.93130.3308−0.09880.105*
C170.9083 (2)0.26144 (18)0.17969 (16)0.0417 (4)
C180.8065 (3)0.1533 (2)0.1580 (2)0.0525 (5)
H180.70360.15380.09810.063*
C190.8543 (4)0.0441 (2)0.2235 (2)0.0634 (6)
H190.7835−0.02760.20770.076*
C201.0062 (4)0.0418 (2)0.3117 (2)0.0654 (6)
H201.0375−0.03090.35700.079*
C211.1104 (3)0.1459 (3)0.3327 (2)0.0600 (6)
H211.21490.14340.39120.072*
C221.0634 (3)0.2562 (2)0.26817 (18)0.0500 (4)
H221.13600.32700.28420.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0472 (8)0.0620 (10)0.0923 (12)−0.0134 (8)0.0056 (8)0.0097 (9)
O20.0845 (12)0.0894 (13)0.0451 (9)−0.0115 (11)−0.0149 (8)−0.0095 (9)
N10.0402 (7)0.0397 (7)0.0373 (7)−0.0037 (6)0.0051 (6)0.0018 (6)
C20.0390 (8)0.0421 (8)0.0349 (8)−0.0003 (7)0.0023 (6)0.0005 (6)
C30.0429 (9)0.0589 (12)0.0433 (10)−0.0061 (8)−0.0001 (7)−0.0048 (8)
C40.0613 (12)0.0512 (10)0.0343 (9)0.0020 (9)−0.0058 (8)0.0008 (7)
C50.0658 (12)0.0487 (10)0.0327 (8)0.0094 (9)0.0081 (8)0.0039 (7)
C60.0429 (8)0.0453 (9)0.0368 (8)0.0025 (7)0.0093 (7)0.0054 (7)
C70.0499 (10)0.0398 (9)0.0456 (9)−0.0071 (8)−0.0018 (8)0.0104 (7)
C80.0766 (14)0.0449 (11)0.0548 (12)−0.0111 (10)0.0022 (10)−0.0039 (9)
C90.0403 (8)0.0428 (9)0.0387 (8)−0.0052 (7)0.0069 (7)−0.0029 (7)
C100.0585 (11)0.0520 (10)0.0434 (10)0.0020 (9)0.0134 (8)0.0051 (8)
C110.0724 (14)0.0623 (13)0.0475 (11)−0.0077 (11)0.0120 (10)0.0099 (10)
C120.0712 (14)0.0869 (17)0.0465 (11)−0.0237 (13)0.0207 (11)−0.0022 (11)
C130.0619 (13)0.0986 (19)0.0638 (15)−0.0010 (15)0.0287 (12)−0.0103 (14)
C140.0493 (10)0.0683 (14)0.0547 (12)0.0055 (10)0.0118 (9)−0.0031 (10)
C150.0848 (16)0.0563 (12)0.0443 (11)0.0116 (11)0.0129 (11)0.0159 (9)
C160.0966 (19)0.0713 (14)0.0444 (12)0.0180 (14)0.0198 (12)−0.0011 (11)
C170.0436 (9)0.0458 (9)0.0364 (8)0.0071 (8)0.0093 (7)0.0044 (7)
C180.0543 (11)0.0496 (10)0.0504 (11)0.0035 (9)0.0011 (9)0.0042 (8)
C190.0725 (14)0.0477 (12)0.0696 (15)0.0031 (11)0.0117 (12)0.0106 (10)
C200.0843 (16)0.0561 (13)0.0573 (13)0.0203 (12)0.0163 (12)0.0162 (10)
C210.0579 (12)0.0752 (15)0.0446 (11)0.0216 (11)0.0027 (9)0.0064 (10)
C220.0463 (10)0.0573 (11)0.0460 (10)0.0080 (9)0.0068 (8)0.0006 (9)

Geometric parameters (Å, °)

O1—C71.219 (3)C11—C121.370 (4)
O2—C41.211 (3)C11—H110.9300
N1—C71.369 (2)C12—C131.362 (4)
N1—C61.467 (2)C12—H120.9300
N1—C21.469 (2)C13—C141.383 (4)
C2—C91.521 (2)C13—H130.9300
C2—C31.534 (3)C14—H140.9300
C2—H20.9800C15—H15A0.9600
C3—C41.506 (3)C15—H15B0.9600
C3—H3A0.9700C15—H15C0.9600
C3—H3B0.9700C16—H16A0.9600
C4—C51.495 (3)C16—H16B0.9600
C5—C161.528 (3)C16—H16C0.9600
C5—C61.540 (3)C17—C181.381 (3)
C5—C151.548 (3)C17—C221.391 (3)
C6—C171.523 (3)C18—C191.385 (3)
C6—H60.9800C18—H180.9300
C7—C81.499 (3)C19—C201.371 (4)
C8—H8A0.9600C19—H190.9300
C8—H8B0.9600C20—C211.355 (4)
C8—H8C0.9600C20—H200.9300
C9—C141.376 (3)C21—C221.389 (3)
C9—C101.387 (3)C21—H210.9300
C10—C111.376 (3)C22—H220.9300
C10—H100.9300
C7—N1—C6117.82 (15)C9—C10—H10120.0
C7—N1—C2121.12 (15)C12—C11—C10120.3 (2)
C6—N1—C2120.09 (15)C12—C11—H11119.9
N1—C2—C9113.43 (14)C10—C11—H11119.9
N1—C2—C3111.90 (14)C13—C12—C11120.0 (2)
C9—C2—C3107.80 (15)C13—C12—H12120.0
N1—C2—H2107.8C11—C12—H12120.0
C9—C2—H2107.8C12—C13—C14120.4 (2)
C3—C2—H2107.8C12—C13—H13119.8
C4—C3—C2117.60 (17)C14—C13—H13119.8
C4—C3—H3A107.9C9—C14—C13120.0 (2)
C2—C3—H3A107.9C9—C14—H14120.0
C4—C3—H3B107.9C13—C14—H14120.0
C2—C3—H3B107.9C5—C15—H15A109.5
H3A—C3—H3B107.2C5—C15—H15B109.5
O2—C4—C5123.0 (2)H15A—C15—H15B109.5
O2—C4—C3119.9 (2)C5—C15—H15C109.5
C5—C4—C3117.11 (17)H15A—C15—H15C109.5
C4—C5—C16112.9 (2)H15B—C15—H15C109.5
C4—C5—C6110.54 (15)C5—C16—H16A109.5
C16—C5—C6110.58 (18)C5—C16—H16B109.5
C4—C5—C15105.60 (19)H16A—C16—H16B109.5
C16—C5—C15108.50 (18)C5—C16—H16C109.5
C6—C5—C15108.51 (18)H16A—C16—H16C109.5
N1—C6—C17111.05 (14)H16B—C16—H16C109.5
N1—C6—C5109.90 (15)C18—C17—C22117.57 (18)
C17—C6—C5117.75 (17)C18—C17—C6125.84 (17)
N1—C6—H6105.7C22—C17—C6116.52 (18)
C17—C6—H6105.7C17—C18—C19121.5 (2)
C5—C6—H6105.7C17—C18—H18119.3
O1—C7—N1120.9 (2)C19—C18—H18119.3
O1—C7—C8120.5 (2)C20—C19—C18119.9 (2)
N1—C7—C8118.58 (18)C20—C19—H19120.1
C7—C8—H8A109.5C18—C19—H19120.1
C7—C8—H8B109.5C21—C20—C19119.7 (2)
H8A—C8—H8B109.5C21—C20—H20120.1
C7—C8—H8C109.5C19—C20—H20120.1
H8A—C8—H8C109.5C20—C21—C22121.0 (2)
H8B—C8—H8C109.5C20—C21—H21119.5
C14—C9—C10119.22 (17)C22—C21—H21119.5
C14—C9—C2118.71 (18)C21—C22—C17120.4 (2)
C10—C9—C2122.00 (16)C21—C22—H22119.8
C11—C10—C9120.1 (2)C17—C22—H22119.8
C11—C10—H10120.0
C7—N1—C2—C9−70.9 (2)C6—N1—C7—C8170.20 (17)
C6—N1—C2—C9120.55 (17)C2—N1—C7—C81.4 (3)
C7—N1—C2—C3166.82 (16)N1—C2—C9—C14143.64 (19)
C6—N1—C2—C3−1.7 (2)C3—C2—C9—C14−91.9 (2)
N1—C2—C3—C4−35.4 (2)N1—C2—C9—C10−39.4 (2)
C9—C2—C3—C4−160.78 (17)C3—C2—C9—C1085.1 (2)
C2—C3—C4—O2−157.6 (2)C14—C9—C10—C110.4 (3)
C2—C3—C4—C523.6 (3)C2—C9—C10—C11−176.5 (2)
O2—C4—C5—C16−31.1 (3)C9—C10—C11—C12−0.4 (4)
C3—C4—C5—C16147.7 (2)C10—C11—C12—C130.3 (4)
O2—C4—C5—C6−155.5 (2)C11—C12—C13—C14−0.2 (4)
C3—C4—C5—C623.3 (3)C10—C9—C14—C13−0.3 (3)
O2—C4—C5—C1587.3 (3)C2—C9—C14—C13176.7 (2)
C3—C4—C5—C15−93.9 (2)C12—C13—C14—C90.2 (4)
C7—N1—C6—C17107.34 (18)N1—C6—C17—C18104.0 (2)
C2—N1—C6—C17−83.8 (2)C5—C6—C17—C18−23.9 (3)
C7—N1—C6—C5−120.60 (18)N1—C6—C17—C22−73.0 (2)
C2—N1—C6—C548.3 (2)C5—C6—C17—C22159.13 (16)
C4—C5—C6—N1−58.1 (2)C22—C17—C18—C191.4 (3)
C16—C5—C6—N1176.13 (18)C6—C17—C18—C19−175.6 (2)
C15—C5—C6—N157.2 (2)C17—C18—C19—C20−0.3 (4)
C4—C5—C6—C1770.3 (2)C18—C19—C20—C21−1.2 (4)
C16—C5—C6—C17−55.4 (2)C19—C20—C21—C221.6 (4)
C15—C5—C6—C17−174.30 (17)C20—C21—C22—C17−0.5 (3)
C6—N1—C7—O1−9.6 (3)C18—C17—C22—C21−1.0 (3)
C2—N1—C7—O1−178.35 (18)C6—C17—C22—C21176.26 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O10.982.212.700 (3)110
C8—H8A···O2i0.962.533.442 (3)159
C14—H14···O1ii0.932.393.124 (3)135

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2989).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography