PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m1018–m1019.
Published online 2009 July 31. doi:  10.1107/S1600536809029742
PMCID: PMC2977120

Poly[[hemi-μ4-oxalato-hemi-μ2-oxalato-bis­(μ3-pyrazine-2-carboxyl­ato)erbium(III)silver(I)] monohydrate]

Abstract

The asymmetric unit of the title complex, {[AgEr(C5H3N2O2)2(C2O4)]·H2O}n, contains one ErIII atom, one AgI atom, two pyrazine-2-carboxyl­ate (pyc) ligands, two half oxalate ligands (each lying on an inversion center) and one uncoordinated water mol­ecule. The ErIII atom is coordinated by two O atoms and two N atoms from two pyc ligands, one O atom from a third pyc ligand and four O atoms from two oxalate ligands in a distorted monocapped square-anti­prismatic geometry. The AgI atom is coordinated by two N atoms from two pyc ligands, one O atom from a third pyc ligand and one O atom from one oxalate ligand. The crystal structure exhibits a three-dimensional heterometallic polymeric network. O—H(...)O hydrogen bonding between the uncoordinated water mol­ecule and carboxyl­ate O atoms is observed.

Related literature

For general background to lanthanide–transition heterometallic complexes, see: Deng et al. (2008 [triangle]); Wang et al. (2006 [triangle]); Zhou et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1018-scheme1.jpg

Experimental

Crystal data

  • [AgEr(C5H3N2O2)2(C2O4)]·H2O
  • M r = 627.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1018-efi5.jpg
  • a = 10.0482 (6) Å
  • b = 18.3968 (11) Å
  • c = 8.0371 (5) Å
  • β = 95.397 (1)°
  • V = 1479.11 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.02 mm−1
  • T = 296 K
  • 0.22 × 0.20 × 0.19 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.307, T max = 0.349 (expected range = 0.232–0.263)
  • 7533 measured reflections
  • 2649 independent reflections
  • 2450 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.050
  • S = 1.04
  • 2649 reflections
  • 244 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 1.43 e Å−3
  • Δρmin = −1.14 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029742/hy2207sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029742/hy2207Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge China Postdoctoral Science Foundation (project No. 20080440764), Guangdong Province Natural Science Foundation (project No. 9451063101002082), the Key Laboratory of the Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities for supporting this work, and also the Young Teacher Training Plan of Guangdong Universities.

supplementary crystallographic information

Comment

In recent years, many research groups have devoted their work to the design and synthesis of lanthanide–transition heterometallic coordination frameworks with bridging multifunctional organic ligands, not only because of their fascinating topological networks but also due to their potential applications in ion exchange, gas storage, catalysis and luminescence (Wang et al., 2006; Zhou et al., 2006). As a building block, pyrazine-2-carboxylate (pyc) and oxalate are excellent candidates for the construction of heterometallic complexes (Deng et al., 2008). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

The asymmetric unit of the title complex contains one ErIII atom, one AgI atom, two pyc ligands, two half oxalate ligands, each lying on an inversion center, and one uncoordinated water molecule (Fig. 1). The ErIII atom is coordinated by two O atoms and two N atoms from two pyc ligands, one O atom from a third pyc ligand and four O atoms from two oxalate ligands. The coordination geometry around the ErIII atom can be described as distorted monocapped square-antiprismatic, with Er—O bond distances and O—Er—O bond angles range from 2.333 (3) to 2.451 (3) Å and 66.24 (9) to 147.36 (10)°, respectively (Table 1). The AgI atom has a distorted tetrahedral coordination geometry, defined by two N atoms from two pyc ligands, one O atom from a third pyc ligand and one O atom from one oxalate ligand. The Ag—N and Ag—O bond distances vary from 2.299 (4) to 2.648 (4) Å. The oxalate ligands bridge the Er atoms to form a zigzag chain. These chains are further interconnected by Ag–pyc subunits into a three-dimensional polymeric network (Fig. 2). O—H···O hydrogen bond involving the carboxylate O atoms of the pyc ligands and uncoordinated water molecules further enhance the stability of the three-dimensional network (Table 2).

Experimental

A mixture of Er2O3 (0.183 g, 0.5 mmol), AgNO3 (0.170 g, 1 mmol), pyrazine-2-carboxylic acid (0.124 g, 1 mmol), oxalic acid (0.09 g, 1 mmol) and water (10 ml) in the presence of HNO3 (0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 3 d, and then cooled to room temperature at 5 K h-1. Colorless block crystals were obtained.

Refinement

Water H atoms were tentatively located in a difference Fourier map and refined with distance restraints of O—H = 0.86 (1) and H···H = 1.35 Å, and with Uiso(H) = 1.5Ueq(O). H atoms attached to C atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.84 Å from Ag1 and the deepest hole 0.73 Å from Ag1.

Figures

Fig. 1.
The asymmetric unit of the title compound. H atoms have been omitted for clarity. [Symmetry codes: (i) 1-x, -y, -z; (ii) 1-x, -y, 1-z; (iii) x, 1/2-y, -1/2+z; (iv) 1+x, 1/2-y, -1/2+z; (v) 1+x, 1/2-y, 1/2+z; (vi) 1-x, 1/2+y, 1/2-z.]
Fig. 2.
Packing diagram of the title compound.

Crystal data

[AgEr(C5H3N2O2)2(C2O4)]·H2OF(000) = 1180
Mr = 627.35Dx = 2.817 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5128 reflections
a = 10.0482 (6) Åθ = 2.2–28.2°
b = 18.3968 (11) ŵ = 7.02 mm1
c = 8.0371 (5) ÅT = 296 K
β = 95.397 (1)°Block, colorless
V = 1479.11 (16) Å30.22 × 0.20 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2649 independent reflections
Radiation source: fine-focus sealed tube2450 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→12
Tmin = 0.307, Tmax = 0.349k = −22→19
7533 measured reflectionsl = −9→5

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.024P)2 + 4.153P] where P = (Fo2 + 2Fc2)/3
2649 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 1.43 e Å3
12 restraintsΔρmin = −1.14 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Er10.364162 (17)0.105359 (10)0.24162 (2)0.01442 (7)
Ag10.85087 (4)0.42746 (2)0.39306 (4)0.03045 (11)
O10.2989 (3)0.21768 (16)0.3579 (4)0.0242 (7)
O20.3493 (3)0.32200 (16)0.4921 (4)0.0235 (7)
O3−0.0813 (3)0.0887 (2)0.1736 (4)0.0317 (8)
O40.1381 (3)0.09487 (18)0.1482 (4)0.0250 (7)
O50.3318 (3)0.01811 (16)0.0110 (4)0.0207 (6)
O70.5023 (3)0.09455 (15)0.4957 (4)0.0199 (6)
N10.5506 (3)0.20455 (19)0.2760 (4)0.0190 (8)
N20.7204 (4)0.3245 (2)0.3075 (5)0.0289 (9)
N30.1969 (4)0.09160 (19)0.4735 (4)0.0194 (8)
N4−0.0028 (4)0.0827 (2)0.6909 (4)0.0239 (8)
C10.3752 (4)0.2695 (2)0.4013 (5)0.0193 (9)
C20.5118 (4)0.2678 (2)0.3374 (5)0.0195 (9)
C30.5950 (4)0.3270 (3)0.3465 (6)0.0259 (10)
H30.56210.37110.38180.031*
C40.7614 (5)0.2604 (3)0.2544 (6)0.0287 (11)
H40.84910.25540.22820.034*
C50.6765 (4)0.2009 (3)0.2372 (6)0.0255 (10)
H50.70820.15730.19760.031*
C60.0371 (4)0.0914 (2)0.2309 (5)0.0185 (9)
C70.0668 (4)0.0902 (2)0.4181 (5)0.0183 (9)
C8−0.0327 (4)0.0862 (3)0.5258 (5)0.0223 (10)
H8−0.12190.08600.48240.027*
C90.1265 (4)0.0855 (3)0.7468 (5)0.0267 (10)
H90.15080.08450.86140.032*
C100.2255 (4)0.0900 (3)0.6381 (6)0.0269 (10)
H100.31450.09200.68180.032*
C110.4313 (4)−0.0108 (2)−0.0429 (5)0.0164 (9)
C120.5388 (4)0.0323 (2)0.5434 (5)0.0176 (9)
O1W0.0424 (5)0.2589 (3)0.4885 (8)0.0827 (16)
H1W0.10960.25210.43140.124*
H2W0.06620.23680.58160.124*
O60.4323 (3)−0.05626 (16)−0.1587 (4)0.0212 (7)
O80.6284 (3)0.01649 (16)0.6555 (4)0.0226 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Er10.01594 (11)0.01469 (11)0.01268 (11)0.00069 (7)0.00162 (7)−0.00034 (7)
Ag10.0286 (2)0.0423 (2)0.02146 (19)−0.00868 (16)0.00783 (14)−0.00439 (16)
O10.0201 (15)0.0210 (16)0.0326 (18)−0.0023 (13)0.0074 (13)−0.0060 (14)
O20.0281 (17)0.0210 (16)0.0212 (16)0.0042 (13)0.0014 (13)−0.0076 (13)
O30.0201 (16)0.059 (2)0.0152 (16)0.0027 (15)−0.0017 (13)−0.0041 (15)
O40.0199 (16)0.042 (2)0.0140 (15)−0.0004 (13)0.0046 (12)0.0007 (14)
O50.0205 (15)0.0238 (17)0.0176 (15)0.0042 (13)0.0006 (12)−0.0029 (13)
O70.0255 (16)0.0166 (15)0.0169 (15)0.0009 (12)−0.0013 (12)0.0016 (12)
N10.0229 (19)0.0172 (18)0.0170 (18)0.0012 (14)0.0025 (14)−0.0010 (15)
N20.027 (2)0.028 (2)0.032 (2)−0.0040 (17)0.0074 (17)−0.0054 (18)
N30.0221 (19)0.0197 (19)0.0165 (19)−0.0003 (15)0.0029 (14)0.0004 (15)
N40.025 (2)0.032 (2)0.0160 (19)0.0015 (16)0.0052 (15)0.0012 (16)
C10.025 (2)0.019 (2)0.013 (2)0.0028 (18)0.0001 (17)0.0025 (18)
C20.025 (2)0.018 (2)0.015 (2)0.0029 (17)0.0000 (17)0.0000 (17)
C30.027 (2)0.020 (2)0.031 (3)−0.0018 (19)0.0060 (19)−0.008 (2)
C40.020 (2)0.031 (3)0.035 (3)−0.0030 (19)0.006 (2)−0.004 (2)
C50.022 (2)0.026 (2)0.028 (2)0.0039 (19)0.0025 (19)−0.006 (2)
C60.021 (2)0.018 (2)0.016 (2)0.0029 (17)0.0032 (17)0.0011 (17)
C70.020 (2)0.018 (2)0.017 (2)−0.0001 (17)0.0016 (17)0.0000 (17)
C80.019 (2)0.032 (3)0.016 (2)0.0006 (19)0.0033 (17)0.0000 (19)
C90.028 (3)0.039 (3)0.013 (2)0.006 (2)0.0032 (18)0.004 (2)
C100.019 (2)0.044 (3)0.018 (2)0.001 (2)0.0023 (18)0.000 (2)
C110.023 (2)0.013 (2)0.013 (2)0.0026 (16)0.0016 (17)0.0050 (17)
C120.019 (2)0.021 (2)0.013 (2)0.0000 (17)0.0041 (16)0.0021 (17)
O1W0.053 (3)0.067 (3)0.130 (5)−0.008 (2)0.013 (3)−0.020 (3)
O60.0200 (15)0.0215 (16)0.0224 (16)−0.0006 (12)0.0033 (12)−0.0073 (13)
O80.0237 (16)0.0220 (16)0.0209 (16)−0.0013 (13)−0.0038 (13)0.0024 (13)

Geometric parameters (Å, °)

Er1—O42.333 (3)N3—C101.328 (6)
Er1—O72.367 (3)N3—C71.341 (5)
Er1—O12.385 (3)N4—C81.335 (5)
Er1—O6i2.387 (3)N4—C91.336 (6)
Er1—O8ii2.388 (3)C1—C21.510 (6)
Er1—O2iii2.403 (3)C2—C31.370 (6)
Er1—O52.451 (3)C3—H30.9300
Er1—N12.611 (4)C4—C51.387 (7)
Er1—N32.636 (4)C4—H40.9300
Ag1—N4iv2.299 (4)C5—H50.9300
Ag1—O3v2.312 (3)C6—C71.506 (6)
Ag1—N22.368 (4)C7—C81.385 (6)
Ag1—O5vi2.648 (4)C8—H80.9300
O1—C11.253 (5)C9—C101.387 (6)
O2—C11.252 (5)C9—H90.9300
O3—C61.236 (5)C10—H100.9300
O4—C61.265 (5)C11—O61.252 (5)
O5—C111.245 (5)C11—C11i1.537 (8)
O7—C121.252 (5)C12—O81.247 (5)
N1—C51.332 (6)C12—C12ii1.549 (8)
N1—C21.337 (5)O1W—H1W0.86
N2—C31.328 (6)O1W—H2W0.86
N2—C41.332 (6)
O4—Er1—O7138.16 (10)C3—N2—C4115.8 (4)
O4—Er1—O184.40 (11)C3—N2—Ag1114.5 (3)
O7—Er1—O183.98 (10)C4—N2—Ag1128.4 (3)
O4—Er1—O6i135.46 (10)C10—N3—C7116.3 (4)
O7—Er1—O6i76.17 (10)C10—N3—Er1127.9 (3)
O1—Er1—O6i135.36 (10)C7—N3—Er1115.7 (3)
O4—Er1—O8ii91.81 (11)C8—N4—C9117.0 (4)
O7—Er1—O8ii68.02 (10)C8—N4—Ag1ix127.4 (3)
O1—Er1—O8ii132.72 (11)C9—N4—Ag1ix115.6 (3)
O6i—Er1—O8ii75.03 (10)O2—C1—O1126.4 (4)
O4—Er1—O2iii78.18 (10)O2—C1—C2117.4 (4)
O7—Er1—O2iii138.78 (10)O1—C1—C2116.2 (4)
O1—Er1—O2iii81.23 (11)N1—C2—C3120.9 (4)
O6i—Er1—O2iii87.99 (10)N1—C2—C1116.7 (4)
O8ii—Er1—O2iii143.95 (10)C3—C2—C1122.3 (4)
O4—Er1—O569.30 (10)N2—C3—C2123.2 (4)
O7—Er1—O5128.53 (10)N2—C3—H3118.4
O1—Er1—O5147.36 (10)C2—C3—H3118.4
O6i—Er1—O566.24 (9)N2—C4—C5121.7 (4)
O8ii—Er1—O569.19 (10)N2—C4—H4119.2
O2iii—Er1—O574.90 (10)C5—C4—H4119.2
O4—Er1—N1139.39 (11)N1—C5—C4121.7 (4)
O7—Er1—N167.09 (10)N1—C5—H5119.1
O1—Er1—N164.79 (10)C4—C5—H5119.1
O6i—Er1—N170.67 (10)O3—C6—O4126.7 (4)
O8ii—Er1—N1128.36 (10)O3—C6—C7117.7 (4)
O2iii—Er1—N171.78 (10)O4—C6—C7115.6 (4)
O5—Er1—N1125.49 (10)N3—C7—C8122.2 (4)
O4—Er1—N363.46 (10)N3—C7—C6115.2 (4)
O7—Er1—N375.12 (11)C8—C7—C6122.6 (4)
O1—Er1—N365.75 (11)N4—C8—C7121.0 (4)
O6i—Er1—N3141.34 (11)N4—C8—H8119.5
O8ii—Er1—N370.51 (11)C7—C8—H8119.5
O2iii—Er1—N3130.51 (11)N4—C9—C10121.6 (4)
O5—Er1—N3115.07 (10)N4—C9—H9119.2
N1—Er1—N3119.41 (11)C10—C9—H9119.2
N4iv—Ag1—O3v121.94 (12)N3—C10—C9121.9 (4)
N4iv—Ag1—N295.91 (13)N3—C10—H10119.0
O3v—Ag1—N2106.55 (13)C9—C10—H10119.0
C1—O1—Er1125.8 (3)O5—C11—O6127.3 (4)
C1—O2—Er1vii156.2 (3)O5—C11—C11i116.8 (4)
C6—O3—Ag1viii123.6 (3)O6—C11—C11i115.9 (4)
C6—O4—Er1129.8 (3)O8—C12—O7127.2 (4)
C11—O5—Er1119.3 (3)O8—C12—C12ii116.4 (5)
C12—O7—Er1118.2 (3)O7—C12—C12ii116.3 (4)
C5—N1—C2116.5 (4)H1W—O1W—H2W103.0
C5—N1—Er1128.9 (3)C11—O6—Er1i121.8 (3)
C2—N1—Er1114.6 (3)C12—O8—Er1ii117.8 (3)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z−1/2; (iv) x+1, −y+1/2, z−1/2; (v) x+1, −y+1/2, z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) x, −y+1/2, z+1/2; (viii) x−1, −y+1/2, z−1/2; (ix) x−1, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O10.862.142.971 (6)162

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2207).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deng, H., Li, Y.-H., Qiu, Y.-C., Li, Z.-H. & Zeller, M. (2008). Inorg. Chem. Commun.11, 1152–1155.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E. N., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed.45, 3287–3291. [PubMed]
  • Zhou, Y., Hong, M. & Wu, X. (2006). Chem. Commun. pp. 135–143. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography