PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1891.
Published online 2009 July 18. doi:  10.1107/S1600536809027470
PMCID: PMC2977118

Adamantane-1-thio­amide

Abstract

The title compound, C11H17NS, is an important inter­mediate for the synthesis of biologically active adamantlythia­zolo-oxadiazo­les. The adamantyl residue is disordered about a twofold rotation axis over two sites with site-occupation factors of 0.817 (3) and 0.183 (3). The crystal structure is stabilized by inter­molecular N—H(...)S hydrogen-bonding inter­actions.

Related literature

Adamantane derivatives include well known drugs such as Rimantadine, Memantine, Adapalene and Adatanserin, see: Krasnikov et al. (2004 [triangle]). For their biological activity, see: Singh et al. (2007 [triangle]); Wennekes et al. (2007 [triangle]); Inaba et al. (2007 [triangle]); Kolocouris et al. (2007 [triangle]). Thio­amides are not only widely used as fungicides (Klimesova et al., 1999 [triangle]) and herbicides (Bahadir et al., 1979 [triangle]) but are also valuable inter­mediates in the synthesis of heterocyclic compounds (Jagodzinski, 2003 [triangle]). For the synthesis of the title compound, see: Kaboudin & Elhamifar (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1891-scheme1.jpg

Experimental

Crystal data

  • C11H17NS
  • M r = 195.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1891-efi1.jpg
  • a = 24.255 (2) Å
  • b = 7.9879 (5) Å
  • c = 11.2928 (9) Å
  • β = 100.859 (7)°
  • V = 2148.8 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 173 K
  • 0.39 × 0.26 × 0.25 mm

Data collection

  • Stoe IPDS-II two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2009 [triangle]; Blessing, 1995 [triangle]) T min = 0.907, T max = 0.939
  • 7423 measured reflections
  • 2002 independent reflections
  • 1703 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.103
  • S = 1.07
  • 2002 reflections
  • 163 parameters
  • 35 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027470/hg2536sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027470/hg2536Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MKR is grateful to the HEC-Pakistan for financial support for a PhD program under scholarship No.[ILC–0363104].

supplementary crystallographic information

Comment

Adamantane derivatives have found widespread use as biologically active agents to combat various human pathogens. These derivatives include the well known drugs like Rimantadine, Memantine, Adapalene and Adatanserin (Krasnikov et al., 2004). A broad spectrum of biological activities like antimalarial (Singh et al., 2007), glucosylceramide metabolism inhibitors (Wennekes et al., 2007), vitamin D receptor modulators (Inaba et al., 2007) and anti-influenza (Kolocouris et al., 2007), is associated with adamantane containing preparations and compounds. Thioamides, on the other hand, are not only widely used as fungicides (Klimesova et al., 1999) and herbicides (Bahadir et al., 1979) but are also valuable intermediates in the synthesis of heterocyclic compounds (Jagodzinski, 2003). The title compound, adamantane-1-thioamide (1), was synthesized in this laboratory as an intermediate in the synthesis of adamantlythiazolo-oxadiazoles to explore their potential as antitumour agents. The synthesis was accomplished by treating adamantane-1-carbonitrile with P4S10 according to a known procedure (Kaboudin et al., 2006). Here, we are going to report the crystal structure of (1). The crystal structure is stabilized by intermolecular N—H···S, hydrogen-bond interactions.

Experimental

A solution of P4S10 (3.1 g, 7.0 mmol.) in ethanol (10 ml) was stirred for 1 h. Adamantane-1-carbonitrile (0.5 g, 3.5 mmol.) was added and the mixture refluxed for 12 h. The mixture was concentrated, water (25 ml) was added and extracted with dichloromethane (3 × 25 ml). The combined organic extracts were dried (anhydrous Na2SO4, concentrated on rotary and refrigerated. The white precipitates separated were recrystallized from ethanol. Yield: 62%; m.p.: 159–162 °C; Rf: 0.40 (n-hexane: ethylacetate; 7:3); IR (νmax, KBr, cm-1): 3424, 3323, 3144, 2907, 2848, 1656, 1449, 1384, 1310, 1240; 1H-NMR (CDCl3): δ 7.9 (1H, b), 7.1 (1H, b), 1.9 (9H, b), 1.71 (6H, b); 13C-NMR (CDCl3): δ 218.8, 45.6, 41.7, 36.2, 28.4; EIMS: (m/z %) 195 (80), 162 (15), 135 (100), 107 (13),93 (20), 79 (23), 60 (13); Elemental analysis for C11H17NS (195.32):C, 67.64; H, 8.77; N, 7.17. Found: C, 67.87; H, 8.88; N, 7.38.

Refinement

H atom on the N atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.99–1.00 Å and Uiso(H) = 1.2Ueq(C). The adamantyl residue is disordered about a twofold rotation axis over two sites with site occupation factors of 0.817 (3) and 0.183 (3). Similarity restraints were applied to keep the bond lengths and angles of the minor occupied site in a reasonable range.

Figures

Fig. 1.
Molecular structure of the title compound (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The disordered atoms of the minor occupied site have been omitted for clarity.
Fig. 2.
Molecular structure of the title compound (I) showing both the major and minor occupied positions of the disordered atoms.

Crystal data

C11H17NSF(000) = 848
Mr = 195.32Dx = 1.208 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7109 reflections
a = 24.255 (2) Åθ = 3.5–25.9°
b = 7.9879 (5) ŵ = 0.26 mm1
c = 11.2928 (9) ÅT = 173 K
β = 100.859 (7)°Block, colourless
V = 2148.8 (3) Å30.39 × 0.26 × 0.25 mm
Z = 8

Data collection

Stoe IPDS-II two-circle diffractometer2002 independent reflections
Radiation source: fine-focus sealed tube1703 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 25.5°, θmin = 3.4°
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995)h = −29→29
Tmin = 0.907, Tmax = 0.939k = −9→8
7423 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0572P)2 + 0.6628P] where P = (Fo2 + 2Fc2)/3
2002 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.20 e Å3
35 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.21599 (2)0.61925 (7)0.64064 (3)0.0548 (2)
N10.20667 (6)0.55153 (18)0.41220 (11)0.0355 (3)
H1A0.1949 (7)0.495 (2)0.3461 (12)0.041 (5)*
H1B0.2299 (7)0.6339 (18)0.4094 (17)0.044 (5)*
C10.19018 (6)0.51441 (19)0.51351 (12)0.0307 (3)
C20.14709 (6)0.37457 (18)0.51046 (12)0.0280 (3)
C30.09531 (7)0.4503 (2)0.55352 (17)0.0346 (5)0.817 (2)
H3A0.10710.49950.63480.041*0.817 (2)
H3B0.07890.54060.49780.041*0.817 (2)
C40.05109 (9)0.3143 (4)0.5574 (2)0.0449 (6)0.817 (2)
H40.01790.36400.58550.054*0.817 (2)
C50.03278 (11)0.2407 (4)0.4326 (2)0.0535 (7)0.817 (2)
H5A0.00400.15350.43460.064*0.817 (2)
H5B0.01590.32940.37600.064*0.817 (2)
C60.08243 (15)0.1650 (4)0.3893 (3)0.0553 (10)0.817 (2)
H60.06970.11720.30680.066*0.817 (2)
C70.12688 (9)0.3016 (3)0.38385 (17)0.0424 (5)0.817 (2)
H7A0.15910.25290.35340.051*0.817 (2)
H7B0.11040.39160.32790.051*0.817 (2)
C80.17150 (8)0.2349 (3)0.59767 (19)0.0401 (5)0.817 (2)
H8A0.18420.28210.67930.048*0.817 (2)
H8B0.20440.18450.57090.048*0.817 (2)
C90.07646 (14)0.1784 (3)0.6434 (2)0.0466 (6)0.817 (2)
H9A0.04790.09130.64790.056*0.817 (2)
H9B0.08840.22630.72510.056*0.817 (2)
C100.10857 (13)0.0264 (3)0.4743 (3)0.0591 (7)0.817 (2)
H10A0.1415−0.02100.44600.071*0.817 (2)
H10B0.0809−0.06450.47560.071*0.817 (2)
C110.12686 (11)0.0991 (3)0.6021 (2)0.0493 (6)0.817 (2)
H110.14290.00840.65940.059*0.817 (2)
C3'0.0918 (3)0.4290 (11)0.4335 (8)0.037 (2)*0.183 (2)
H3'10.09800.46100.35230.045*0.183 (2)
H3'20.07740.52840.47030.045*0.183 (2)
C4'0.0475 (5)0.2869 (14)0.4214 (10)0.046 (3)*0.183 (2)
H4'0.01090.32380.37210.055*0.183 (2)
C5'0.0714 (5)0.1404 (17)0.3637 (12)0.040 (4)*0.183 (2)
H5'10.04290.05030.34890.048*0.183 (2)
H5'20.07940.17580.28460.048*0.183 (2)
C6'0.1241 (4)0.0722 (14)0.4391 (9)0.043 (3)*0.183 (2)
H6'0.1372−0.02830.39940.052*0.183 (2)
C7'0.1683 (3)0.2123 (10)0.4505 (8)0.039 (2)*0.183 (2)
H7'10.17570.24080.36960.046*0.183 (2)
H7'20.20390.17270.50060.046*0.183 (2)
C8'0.1384 (3)0.3213 (10)0.6373 (7)0.0338 (19)*0.183 (2)
H8'10.12440.41790.67780.041*0.183 (2)
H8'20.17490.28650.68620.041*0.183 (2)
C9'0.0414 (5)0.2430 (18)0.5496 (11)0.057 (4)*0.183 (2)
H9'10.01120.15850.54600.068*0.183 (2)
H9'20.02950.34450.58850.068*0.183 (2)
C10'0.1166 (5)0.0295 (15)0.5663 (11)0.045 (3)*0.183 (2)
H10C0.0897−0.06450.56260.055*0.183 (2)
H10D0.1530−0.00840.61360.055*0.183 (2)
C11'0.0957 (5)0.1737 (16)0.6295 (11)0.041 (4)*0.183 (2)
H11'0.08920.14080.71120.049*0.183 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0758 (4)0.0683 (4)0.0212 (2)−0.0451 (3)0.01175 (19)−0.00661 (18)
N10.0424 (7)0.0430 (8)0.0228 (6)−0.0139 (6)0.0104 (5)−0.0023 (6)
C10.0332 (7)0.0362 (8)0.0227 (7)−0.0052 (6)0.0053 (5)0.0032 (6)
C20.0324 (7)0.0308 (8)0.0207 (6)−0.0046 (6)0.0048 (5)0.0004 (5)
C30.0337 (9)0.0358 (10)0.0338 (10)−0.0021 (8)0.0052 (7)−0.0008 (8)
C40.0373 (11)0.0496 (16)0.0490 (13)−0.0057 (11)0.0111 (9)−0.0014 (11)
C50.0488 (15)0.0577 (16)0.0497 (15)−0.0226 (13)−0.0013 (11)0.0048 (12)
C60.078 (2)0.0540 (17)0.0329 (14)−0.0292 (15)0.0086 (13)−0.0115 (12)
C70.0573 (12)0.0448 (12)0.0262 (9)−0.0168 (9)0.0111 (8)−0.0075 (8)
C80.0404 (11)0.0374 (11)0.0406 (11)0.0012 (8)0.0025 (8)0.0096 (9)
C90.0510 (16)0.0478 (15)0.0425 (13)−0.0167 (12)0.0124 (12)0.0020 (10)
C100.0797 (18)0.0336 (13)0.0666 (19)−0.0123 (12)0.0206 (15)−0.0110 (12)
C110.0638 (15)0.0329 (12)0.0483 (13)−0.0030 (11)0.0032 (11)0.0106 (11)

Geometric parameters (Å, °)

S1—C11.6780 (14)C9—H9B0.9900
N1—C11.3149 (19)C10—C111.542 (4)
N1—H1A0.874 (9)C10—H10A0.9900
N1—H1B0.870 (9)C10—H10B0.9900
C1—C21.5257 (19)C11—H111.0000
C2—C3'1.518 (7)C3'—C4'1.550 (12)
C2—C81.532 (2)C3'—H3'10.9900
C2—C71.536 (2)C3'—H3'20.9900
C2—C8'1.546 (8)C4'—C5'1.507 (14)
C2—C31.552 (2)C4'—C9'1.524 (14)
C2—C7'1.592 (8)C4'—H4'1.0000
C3—C41.533 (3)C5'—C6'1.498 (13)
C3—H3A0.9900C5'—H5'10.9900
C3—H3B0.9900C5'—H5'20.9900
C4—C91.509 (4)C6'—C10'1.521 (13)
C4—C51.515 (3)C6'—C7'1.538 (12)
C4—H41.0000C6'—H6'1.0000
C5—C61.509 (5)C7'—H7'10.9900
C5—H5A0.9900C7'—H7'20.9900
C5—H5B0.9900C8'—C11'1.561 (12)
C6—C101.523 (4)C8'—H8'10.9900
C6—C71.543 (4)C8'—H8'20.9900
C6—H61.0000C9'—C11'1.553 (14)
C7—H7A0.9900C9'—H9'10.9900
C7—H7B0.9900C9'—H9'20.9900
C8—C111.540 (3)C10'—C11'1.492 (13)
C8—H8A0.9900C10'—H10C0.9900
C8—H8B0.9900C10'—H10D0.9900
C9—C111.526 (4)C11'—H11'1.0000
C9—H9A0.9900
C1—N1—H1A121.5 (13)H9A—C9—H9B108.1
C1—N1—H1B120.4 (13)C6—C10—C11109.2 (2)
H1A—N1—H1B118.0 (18)C6—C10—H10A109.8
N1—C1—C2117.69 (13)C11—C10—H10A109.8
N1—C1—S1120.42 (11)C6—C10—H10B109.8
C2—C1—S1121.89 (11)C11—C10—H10B109.8
C3'—C2—C1109.3 (3)H10A—C10—H10B108.3
C3'—C2—C8140.3 (3)C9—C11—C8109.1 (2)
C1—C2—C8109.80 (12)C9—C11—C10109.7 (2)
C3'—C2—C758.9 (4)C8—C11—C10108.4 (2)
C1—C2—C7113.32 (13)C9—C11—H11109.9
C8—C2—C7109.82 (15)C8—C11—H11109.9
C3'—C2—C8'110.5 (4)C10—C11—H11109.9
C1—C2—C8'113.1 (3)C2—C3'—C4'111.3 (7)
C8—C2—C8'46.1 (3)C2—C3'—H3'1109.4
C7—C2—C8'133.0 (3)C4'—C3'—H3'1109.4
C3'—C2—C352.3 (4)C2—C3'—H3'2109.4
C1—C2—C3107.40 (13)C4'—C3'—H3'2109.4
C8—C2—C3108.66 (14)H3'1—C3'—H3'2108.0
C7—C2—C3107.70 (14)C5'—C4'—C9'110.3 (10)
C8'—C2—C363.8 (3)C5'—C4'—C3'106.9 (9)
C3'—C2—C7'108.1 (5)C9'—C4'—C3'106.0 (9)
C1—C2—C7'109.3 (3)C5'—C4'—H4'111.2
C8—C2—C7'64.1 (3)C9'—C4'—H4'111.2
C7—C2—C7'50.8 (3)C3'—C4'—H4'111.2
C8'—C2—C7'106.3 (5)C6'—C5'—C4'113.1 (10)
C3—C2—C7'142.7 (3)C6'—C5'—H5'1109.0
C4—C3—C2110.17 (16)C4'—C5'—H5'1109.0
C4—C3—H3A109.6C6'—C5'—H5'2109.0
C2—C3—H3A109.6C4'—C5'—H5'2109.0
C4—C3—H3B109.6H5'1—C5'—H5'2107.8
C2—C3—H3B109.6C5'—C6'—C10'112.2 (10)
H3A—C3—H3B108.1C5'—C6'—C7'106.9 (9)
C9—C4—C5109.4 (2)C10'—C6'—C7'106.8 (8)
C9—C4—C3109.02 (19)C5'—C6'—H6'110.3
C5—C4—C3109.4 (2)C10'—C6'—H6'110.3
C9—C4—H4109.7C7'—C6'—H6'110.3
C5—C4—H4109.7C6'—C7'—C2110.6 (6)
C3—C4—H4109.7C6'—C7'—H7'1109.5
C6—C5—C4110.2 (2)C2—C7'—H7'1109.5
C6—C5—H5A109.6C6'—C7'—H7'2109.5
C4—C5—H5A109.6C2—C7'—H7'2109.5
C6—C5—H5B109.6H7'1—C7'—H7'2108.1
C4—C5—H5B109.6C2—C8'—C11'111.1 (6)
H5A—C5—H5B108.1C2—C8'—H8'1109.4
C5—C6—C10110.5 (3)C11'—C8'—H8'1109.4
C5—C6—C7109.6 (2)C2—C8'—H8'2109.4
C10—C6—C7109.2 (3)C11'—C8'—H8'2109.4
C5—C6—H6109.2H8'1—C8'—H8'2108.0
C10—C6—H6109.2C4'—C9'—C11'114.2 (10)
C7—C6—H6109.2C4'—C9'—H9'1108.7
C2—C7—C6109.51 (17)C11'—C9'—H9'1108.7
C2—C7—H7A109.8C4'—C9'—H9'2108.7
C6—C7—H7A109.8C11'—C9'—H9'2108.7
C2—C7—H7B109.8H9'1—C9'—H9'2107.6
C6—C7—H7B109.8C11'—C10'—C6'112.9 (9)
H7A—C7—H7B108.2C11'—C10'—H10C109.0
C2—C8—C11110.19 (15)C6'—C10'—H10C109.0
C2—C8—H8A109.6C11'—C10'—H10D109.0
C11—C8—H8A109.6C6'—C10'—H10D109.0
C2—C8—H8B109.6H10C—C10'—H10D107.8
C11—C8—H8B109.6C10'—C11'—C9'108.9 (10)
H8A—C8—H8B108.1C10'—C11'—C8'109.2 (10)
C4—C9—C11110.8 (2)C9'—C11'—C8'104.2 (9)
C4—C9—H9A109.5C10'—C11'—H11'111.4
C11—C9—H9A109.5C9'—C11'—H11'111.4
C4—C9—H9B109.5C8'—C11'—H11'111.4
C11—C9—H9B109.5
N1—C1—C2—C3'−66.3 (4)C4—C9—C11—C860.1 (3)
S1—C1—C2—C3'113.5 (4)C4—C9—C11—C10−58.4 (3)
N1—C1—C2—C8120.45 (17)C2—C8—C11—C9−59.3 (2)
S1—C1—C2—C8−59.78 (17)C2—C8—C11—C1060.1 (2)
N1—C1—C2—C7−2.7 (2)C6—C10—C11—C957.2 (3)
S1—C1—C2—C7177.02 (13)C6—C10—C11—C8−61.8 (3)
N1—C1—C2—C8'170.1 (4)C1—C2—C3'—C4'176.7 (6)
S1—C1—C2—C8'−10.1 (4)C8—C2—C3'—C4'−13.3 (10)
N1—C1—C2—C3−121.57 (16)C7—C2—C3'—C4'70.5 (7)
S1—C1—C2—C358.20 (16)C8'—C2—C3'—C4'−58.2 (8)
N1—C1—C2—C7'51.9 (4)C3—C2—C3'—C4'−85.9 (7)
S1—C1—C2—C7'−128.3 (3)C7'—C2—C3'—C4'57.8 (8)
C3'—C2—C3—C480.9 (4)C2—C3'—C4'—C5'−59.7 (10)
C1—C2—C3—C4−177.77 (14)C2—C3'—C4'—C9'57.9 (10)
C8—C2—C3—C4−59.06 (18)C9'—C4'—C5'—C6'−51.8 (15)
C7—C2—C3—C459.85 (19)C3'—C4'—C5'—C6'63.0 (13)
C8'—C2—C3—C4−70.1 (4)C4'—C5'—C6'—C10'53.5 (15)
C7'—C2—C3—C412.4 (6)C4'—C5'—C6'—C7'−63.2 (13)
C2—C3—C4—C959.8 (2)C5'—C6'—C7'—C258.7 (10)
C2—C3—C4—C5−59.8 (2)C10'—C6'—C7'—C2−61.6 (9)
C9—C4—C5—C6−59.6 (3)C3'—C2—C7'—C6'−57.6 (8)
C3—C4—C5—C659.8 (3)C1—C2—C7'—C6'−176.6 (6)
C4—C5—C6—C1060.0 (3)C8—C2—C7'—C6'80.2 (6)
C4—C5—C6—C7−60.3 (3)C7—C2—C7'—C6'−71.8 (6)
C3'—C2—C7—C6−79.3 (4)C8'—C2—C7'—C6'61.0 (7)
C1—C2—C7—C6−178.50 (19)C3—C2—C7'—C6'−6.9 (10)
C8—C2—C7—C658.3 (2)C3'—C2—C8'—C11'59.2 (8)
C8'—C2—C7—C610.5 (5)C1—C2—C8'—C11'−177.9 (6)
C3—C2—C7—C6−59.9 (2)C8—C2—C8'—C11'−82.1 (7)
C7'—C2—C7—C685.0 (4)C7—C2—C8'—C11'−6.8 (9)
C5—C6—C7—C261.0 (3)C3—C2—C8'—C11'83.4 (7)
C10—C6—C7—C2−60.2 (3)C7'—C2—C8'—C11'−57.9 (8)
C3'—C2—C8—C115.9 (6)C5'—C4'—C9'—C11'52.5 (15)
C1—C2—C8—C11175.91 (18)C3'—C4'—C9'—C11'−62.8 (13)
C7—C2—C8—C11−58.9 (2)C5'—C6'—C10'—C11'−55.3 (13)
C8'—C2—C8—C1172.4 (4)C7'—C6'—C10'—C11'61.5 (11)
C3—C2—C8—C1158.7 (2)C6'—C10'—C11'—C9'53.7 (13)
C7'—C2—C8—C11−81.6 (4)C6'—C10'—C11'—C8'−59.5 (12)
C5—C4—C9—C1159.2 (3)C4'—C9'—C11'—C10'−53.6 (14)
C3—C4—C9—C11−60.5 (3)C4'—C9'—C11'—C8'62.9 (13)
C5—C6—C10—C11−58.5 (3)C2—C8'—C11'—C10'58.0 (10)
C7—C6—C10—C1162.1 (3)C2—C8'—C11'—C9'−58.2 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.87 (1)2.63 (1)3.4027 (14)148 (2)
N1—H1B···S1ii0.87 (1)2.49 (1)3.3485 (14)168 (2)

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2536).

References

  • Bahadir, M., Nitz, S., Pailar, H. & Karte, F. (1979). J. Agric. Food Chem.27, 815–818.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Inaba, Y., Yamamoto, K., Yoshimoto, N., Matsunawa, M., Uno, S., Yamada, S. & Makishima, M. (2007). Mol. Pharmacol.71, 1298–1311. [PubMed]
  • Jagodzinski, T. S. (2003). Chem. Rev.103, 197–227. [PubMed]
  • Kaboudin, B. & Elhamifar, D. (2006). Synthesis, pp. 224–226.
  • Klimesova, V., Svoboda, M., Karel, W. K., Kaustova, J., Buchta, V. & Kralova, K. (1999). Eur. J. Med. Chem.34, 433–440.
  • Kolocouris, N., Zoidis, G., Foscolos, G. B., Fytas, G., Prathalingham, S. R., Kelly, J. M., Naesens, L. & De Clercq, E. (2007). Bioorg. Med. Chem. Lett.17, 4358–4362. [PubMed]
  • Krasnikov, S. V., Obuchova, T. A., Yasinskii, O. A. & Balakin, K. V. (2004). Tetrahedron Lett.45, 711–714.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, C., Kanchan, R., Sharma, U. & Puri, S. K. (2007). J. Med. Chem.50, 521–527. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Wennekes, T., van den Berg, R. J. B. H. N., Donker, W., van der Marel, G. A., Donker, W., van der Marel, G. A., Strijland, A., Aerts, J. M. F. G. & Overkleeft, H. S. (2007). J. Org. Chem.72, 1088–1097. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography