PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o2028–o2029.
Published online 2009 July 29. doi:  10.1107/S1600536809029389
PMCID: PMC2977109

Methyl 3-(4-bromo­phen­yl)-1-methyl-1,2,3,3a,4,9b-hexa­hydro­benzo[f]chromeno[4,3-b]pyrrole-3a-carboxyl­ate

Abstract

In the title compound, C24H22BrNO3, the dihydro­pyran ring adopts a half-chair conformation, whereas the pyrrolidine ring is in an envelope conformation. The bromo­phenyl group is oriented at an angle of 66.44 (4)° with respect to the naphthalene ring system. In the crystal structure, mol­ecules are linked into centrosymmetric dimers by C—H(...)π inter­actions and the dimers are connected via C—H(...)Br hydrogen bonds. The crystal structure is further stabilized by π–π inter­actions [centroid–centroid distance = 3.453 (1) Å].

Related literature

For the biological activity of pyrrole derivatives, see: Biava et al. (2005 [triangle]); Borthwick et al. (2000 [triangle]); Caine (1993 [triangle]); Carlson (1993 [triangle]); Fernandes et al. (2004 [triangle]); Jiang et al. (2004 [triangle]); Sokoloff et al. (1990 [triangle]); Tidey (1992 [triangle]); Wilner (1985 [triangle]). For a related structure, see: Nirmala et al. (2009 [triangle]). For ring-puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2028-scheme1.jpg

Experimental

Crystal data

  • C24H22BrNO3
  • M r = 452.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2028-efi1.jpg
  • a = 12.7856 (4) Å
  • b = 19.9348 (6) Å
  • c = 8.0189 (3) Å
  • β = 106.163 (2)°
  • V = 1963.06 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.12 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.619, T max = 0.742
  • 49847 measured reflections
  • 6162 independent reflections
  • 4068 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.102
  • S = 1.02
  • 6162 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029389/ci2858sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029389/ci2858Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SN thanks Dr Babu Vargheese, SAIF, IIT Madras, India, for his help with the data collection and SRM management, India, for their support.

supplementary crystallographic information

Comment

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), aggressiveness (Tidey, 1992), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrrole derivatives have good in vitro activities against mycobacteria and candidae (Biava et al., 2005). These derivatives also possess anti-inflammatory (Fernandes et al., 2004) and antiviral (Borthwick et al., 2000) activities. It has also been shown that N-substituted pyrrole derivatives inhibit human immuno deficiency virus type-I (HIV-I) (Jiang et al., 2004). In view of its medicinal importance, the crystal structure determination of the title compound was undertaken.

The geometric parameters of the title molecule (Fig. 1) agree well with those reported for a similar structure (Nirmala et al., 2009). The sum of bond angles around atom N1 [332.0 (8)°] is in accordance with sp3 hybridization. The naphthalene ring system (C2-C11) and the bromophenyl group (Br1/C16-C21) are oriented at an angle of 66.44 (4)° with respect to each other. The heterocyclic ring (O1/C1/C2/C11-C13) of the chromenopyrrole unit adopts a half chair conformation with puckering parameters Q = 0.468 (2) Å, θ = 132.5 (2)° and [var phi] = 83.1 (3)° (Cremer & Pople, 1975). The pyrrolidine ring (N1/C1/C13-C15) adopts an envelope conformation with puckering parameters q2 = 0.433 (2) Å and [var phi] = 214.5 (3)° (Cremer & Pople, 1975). Atom C1 deviates by -0.654 Å from the least-square plane through the remaining four atoms.

The crystal packing is stabilized by intermolecular C—H···Br hydrogen bonds. The molecules are linked into centrosymmetric dimers by C—H···π (C20—H20···Cg1; Cg1 is the centroid of the C3—C8 ring) interactions (Table 1). In addition, π–π interactions between C3—C8 rings at (x, y, z) and (2 -x, 1 -y, 2 -z) stabilize the structure, with a centroid-to-centroid distance of 3.453 (1) Å.

Experimental

A mixture of (Z)-methyl 2-((1-formylnaphthalen-2-yloxy)methyl)-3-(4-bromophenyl)acrylate (20 mmol) and sarcosine (30 mmol) were refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Chloroform and methanol (1:1) solvent mixture was used for the crystallization under slow evaporation method.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms. Reflections 110 and 100 were omitted during the final cycles of refinement since they were seriously effected by the beamstop.

Figures

Fig. 1.
The molecular structure of the title compound, with 30% probability displacement ellipsoids.
Fig. 2.
The packing of the molecules viewed down a axis. H atoms not involed in C—H···Br and C—H···π interactions have been omitted.

Crystal data

C24H22BrNO3F(000) = 928
Mr = 452.34Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14860 reflections
a = 12.7856 (4) Åθ = 2.6–25.2°
b = 19.9348 (6) ŵ = 2.12 mm1
c = 8.0189 (3) ÅT = 293 K
β = 106.163 (2)°Prism, colourless
V = 1963.06 (11) Å30.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII area-detector diffractometer6162 independent reflections
Radiation source: fine-focus sealed tube4068 reflections with I > 2σ(I)
graphiteRint = 0.031
ω and [var phi] scansθmax = 30.9°, θmin = 2.0°
Absorption correction: multi-scan (Blessing, 1995)h = −18→18
Tmin = 0.619, Tmax = 0.742k = −16→28
49847 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0439P)2 + 0.7192P] where P = (Fo2 + 2Fc2)/3
6162 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.68758 (13)0.58289 (8)0.6893 (2)0.0281 (3)
H10.74330.61710.69400.034*
C20.73957 (13)0.52048 (8)0.7836 (2)0.0287 (3)
C30.84557 (13)0.49812 (8)0.7827 (2)0.0306 (3)
C40.91361 (15)0.53431 (10)0.7029 (2)0.0381 (4)
H40.88890.57450.64700.046*
C51.01452 (16)0.51164 (11)0.7061 (2)0.0455 (5)
H51.05760.53670.65300.055*
C61.05416 (17)0.45149 (12)0.7878 (3)0.0510 (5)
H61.12260.43600.78690.061*
C70.99246 (17)0.41579 (11)0.8685 (3)0.0474 (5)
H71.01950.37590.92410.057*
C80.88813 (15)0.43783 (9)0.8699 (2)0.0357 (4)
C90.82649 (16)0.40202 (9)0.9600 (3)0.0425 (4)
H90.85350.36201.01490.051*
C100.72848 (16)0.42484 (9)0.9681 (2)0.0417 (4)
H100.68930.40131.03090.050*
C110.68588 (14)0.48451 (8)0.8811 (2)0.0329 (3)
C120.52824 (14)0.55294 (8)0.7923 (2)0.0338 (4)
H12A0.47140.57000.83960.041*
H12B0.49350.53240.68100.041*
C130.59903 (13)0.61089 (8)0.7656 (2)0.0289 (3)
C140.53395 (14)0.65915 (8)0.6186 (2)0.0333 (4)
H140.56950.70310.64030.040*
C150.55720 (16)0.63062 (10)0.4547 (2)0.0424 (4)
H15A0.48960.61890.36920.051*
H15B0.59520.66350.40400.051*
C160.41597 (13)0.66967 (8)0.6127 (2)0.0308 (3)
C170.38794 (16)0.72456 (9)0.6967 (3)0.0449 (5)
H170.44200.75440.75360.054*
C180.28173 (17)0.73619 (10)0.6981 (3)0.0491 (5)
H180.26450.77320.75580.059*
C190.20242 (15)0.69243 (9)0.6136 (2)0.0379 (4)
C200.22678 (14)0.63726 (9)0.5282 (2)0.0362 (4)
H200.17210.60770.47150.043*
C210.33319 (14)0.62635 (8)0.5280 (2)0.0337 (4)
H210.34990.58920.46990.040*
C220.68903 (16)0.55698 (9)0.3883 (2)0.0385 (4)
H22A0.73260.51770.42590.058*
H22B0.73570.59450.38580.058*
H22C0.64130.54960.27400.058*
C230.63964 (14)0.65052 (8)0.9323 (2)0.0338 (4)
C240.7836 (2)0.71536 (12)1.1053 (3)0.0631 (7)
H24A0.85550.72991.10720.095*
H24B0.78690.68961.20780.095*
H24C0.73780.75381.10180.095*
N10.62481 (12)0.57086 (7)0.50776 (18)0.0322 (3)
O10.58933 (10)0.50339 (6)0.90663 (17)0.0412 (3)
O20.73947 (11)0.67466 (8)0.9542 (2)0.0529 (4)
O30.58771 (13)0.66160 (9)1.03113 (19)0.0594 (4)
Br10.056104 (18)0.708461 (13)0.61041 (4)0.06427 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0292 (8)0.0257 (7)0.0314 (8)−0.0020 (6)0.0121 (6)0.0029 (6)
C20.0324 (8)0.0275 (7)0.0275 (8)0.0002 (6)0.0103 (7)0.0006 (6)
C30.0332 (8)0.0333 (8)0.0255 (8)0.0009 (6)0.0085 (6)−0.0059 (6)
C40.0382 (9)0.0452 (10)0.0322 (9)0.0007 (7)0.0118 (7)−0.0013 (7)
C50.0370 (10)0.0638 (13)0.0382 (10)−0.0007 (9)0.0144 (8)−0.0083 (9)
C60.0379 (10)0.0685 (14)0.0469 (12)0.0140 (10)0.0121 (9)−0.0119 (10)
C70.0477 (11)0.0486 (11)0.0429 (11)0.0169 (9)0.0076 (9)−0.0056 (9)
C80.0382 (9)0.0375 (9)0.0297 (9)0.0063 (7)0.0064 (7)−0.0052 (7)
C90.0523 (11)0.0324 (9)0.0405 (10)0.0103 (8)0.0092 (9)0.0053 (8)
C100.0512 (11)0.0344 (9)0.0426 (10)0.0008 (8)0.0181 (9)0.0105 (8)
C110.0362 (9)0.0315 (8)0.0326 (9)0.0004 (7)0.0124 (7)0.0030 (7)
C120.0304 (8)0.0343 (8)0.0397 (9)0.0005 (6)0.0146 (7)0.0089 (7)
C130.0278 (8)0.0288 (7)0.0324 (8)0.0006 (6)0.0122 (6)0.0043 (6)
C140.0322 (8)0.0302 (8)0.0375 (9)0.0009 (6)0.0100 (7)0.0072 (7)
C150.0399 (10)0.0523 (11)0.0375 (10)0.0099 (8)0.0150 (8)0.0143 (8)
C160.0321 (8)0.0260 (7)0.0334 (9)0.0029 (6)0.0077 (7)0.0028 (6)
C170.0396 (10)0.0328 (9)0.0559 (12)0.0008 (7)0.0024 (9)−0.0141 (8)
C180.0480 (11)0.0385 (10)0.0585 (13)0.0110 (8)0.0106 (10)−0.0155 (9)
C190.0348 (9)0.0392 (9)0.0401 (10)0.0095 (7)0.0110 (8)0.0041 (7)
C200.0348 (9)0.0346 (9)0.0373 (9)−0.0027 (7)0.0068 (7)−0.0015 (7)
C210.0377 (9)0.0293 (8)0.0346 (9)0.0016 (7)0.0110 (7)−0.0045 (7)
C220.0453 (10)0.0421 (10)0.0315 (9)−0.0002 (8)0.0164 (8)0.0016 (7)
C230.0333 (9)0.0317 (8)0.0367 (9)0.0059 (7)0.0103 (7)0.0042 (7)
C240.0480 (13)0.0636 (14)0.0739 (16)−0.0068 (10)0.0107 (11)−0.0321 (12)
N10.0346 (7)0.0358 (7)0.0280 (7)−0.0006 (6)0.0118 (6)0.0051 (6)
O10.0393 (7)0.0416 (7)0.0498 (8)0.0059 (5)0.0238 (6)0.0190 (6)
O20.0394 (7)0.0582 (9)0.0646 (9)−0.0116 (6)0.0203 (7)−0.0283 (7)
O30.0555 (9)0.0822 (11)0.0476 (8)−0.0085 (8)0.0263 (7)−0.0169 (8)
Br10.04256 (13)0.07000 (17)0.0859 (2)0.01747 (10)0.02724 (12)0.00945 (12)

Geometric parameters (Å, °)

C1—N11.473 (2)C14—C161.511 (2)
C1—C21.510 (2)C14—C151.536 (3)
C1—C131.534 (2)C14—H140.98
C1—H10.98C15—N11.464 (2)
C2—C111.377 (2)C15—H15A0.97
C2—C31.429 (2)C15—H15B0.97
C3—C41.413 (2)C16—C171.383 (2)
C3—C81.421 (2)C16—C211.388 (2)
C4—C51.361 (3)C17—C181.381 (3)
C4—H40.93C17—H170.93
C5—C61.392 (3)C18—C191.366 (3)
C5—H50.93C18—H180.93
C6—C71.353 (3)C19—C201.376 (3)
C6—H60.93C19—Br11.8910 (18)
C7—C81.408 (3)C20—C211.378 (2)
C7—H70.93C20—H200.93
C8—C91.403 (3)C21—H210.93
C9—C101.352 (3)C22—N11.452 (2)
C9—H90.93C22—H22A0.96
C10—C111.410 (2)C22—H22B0.96
C10—H100.93C22—H22C0.96
C11—O11.360 (2)C23—O31.188 (2)
C12—O11.424 (2)C23—O21.329 (2)
C12—C131.519 (2)C24—O21.437 (3)
C12—H12A0.97C24—H24A0.96
C12—H12B0.97C24—H24B0.96
C13—C231.514 (2)C24—H24C0.96
C13—C141.569 (2)
N1—C1—C2113.78 (13)C16—C14—C13115.15 (13)
N1—C1—C13101.17 (13)C15—C14—C13103.15 (13)
C2—C1—C13111.80 (13)C16—C14—H14107.0
N1—C1—H1109.9C15—C14—H14107.0
C2—C1—H1109.9C13—C14—H14107.0
C13—C1—H1109.9N1—C15—C14106.96 (14)
C11—C2—C3117.65 (15)N1—C15—H15A110.3
C11—C2—C1119.57 (14)C14—C15—H15A110.3
C3—C2—C1122.72 (14)N1—C15—H15B110.3
C4—C3—C8117.08 (16)C14—C15—H15B110.3
C4—C3—C2123.20 (15)H15A—C15—H15B108.6
C8—C3—C2119.69 (15)C17—C16—C21117.69 (16)
C5—C4—C3121.46 (18)C17—C16—C14119.11 (15)
C5—C4—H4119.3C21—C16—C14123.20 (15)
C3—C4—H4119.3C18—C17—C16121.72 (17)
C4—C5—C6120.93 (19)C18—C17—H17119.1
C4—C5—H5119.5C16—C17—H17119.1
C6—C5—H5119.5C19—C18—C17118.97 (17)
C7—C6—C5119.57 (18)C19—C18—H18120.5
C7—C6—H6120.2C17—C18—H18120.5
C5—C6—H6120.2C18—C19—C20121.18 (17)
C6—C7—C8121.30 (19)C18—C19—Br1119.58 (14)
C6—C7—H7119.4C20—C19—Br1119.23 (14)
C8—C7—H7119.4C19—C20—C21119.14 (16)
C9—C8—C7120.97 (17)C19—C20—H20120.4
C9—C8—C3119.39 (16)C21—C20—H20120.4
C7—C8—C3119.61 (18)C20—C21—C16121.29 (15)
C10—C9—C8120.98 (17)C20—C21—H21119.4
C10—C9—H9119.5C16—C21—H21119.4
C8—C9—H9119.5N1—C22—H22A109.5
C9—C10—C11119.71 (17)N1—C22—H22B109.5
C9—C10—H10120.1H22A—C22—H22B109.5
C11—C10—H10120.1N1—C22—H22C109.5
O1—C11—C2123.97 (15)H22A—C22—H22C109.5
O1—C11—C10113.62 (15)H22B—C22—H22C109.5
C2—C11—C10122.39 (16)O3—C23—O2122.60 (17)
O1—C12—C13112.14 (14)O3—C23—C13124.61 (16)
O1—C12—H12A109.2O2—C23—C13112.73 (14)
C13—C12—H12A109.2O2—C24—H24A109.5
O1—C12—H12B109.2O2—C24—H24B109.5
C13—C12—H12B109.2H24A—C24—H24B109.5
H12A—C12—H12B107.9O2—C24—H24C109.5
C23—C13—C12110.09 (14)H24A—C24—H24C109.5
C23—C13—C1115.59 (13)H24B—C24—H24C109.5
C12—C13—C1108.33 (13)C22—N1—C15111.10 (13)
C23—C13—C14108.83 (13)C22—N1—C1115.52 (14)
C12—C13—C14111.11 (13)C15—N1—C1105.67 (13)
C1—C13—C14102.70 (13)C11—O1—C12116.96 (12)
C16—C14—C15117.01 (15)C23—O2—C24116.95 (16)
N1—C1—C2—C11−94.11 (18)C12—C13—C14—C1637.3 (2)
C13—C1—C2—C1119.7 (2)C1—C13—C14—C16152.89 (14)
N1—C1—C2—C388.72 (18)C23—C13—C14—C15147.21 (14)
C13—C1—C2—C3−157.44 (15)C12—C13—C14—C15−91.41 (16)
C11—C2—C3—C4−173.26 (16)C1—C13—C14—C1524.21 (16)
C1—C2—C3—C44.0 (2)C16—C14—C15—N1−125.38 (15)
C11—C2—C3—C84.7 (2)C13—C14—C15—N12.14 (18)
C1—C2—C3—C8−178.13 (15)C15—C14—C16—C17−143.63 (18)
C8—C3—C4—C51.5 (3)C13—C14—C16—C1794.9 (2)
C2—C3—C4—C5179.42 (16)C15—C14—C16—C2137.0 (2)
C3—C4—C5—C60.3 (3)C13—C14—C16—C21−84.4 (2)
C4—C5—C6—C7−1.5 (3)C21—C16—C17—C180.5 (3)
C5—C6—C7—C80.7 (3)C14—C16—C17—C18−178.94 (19)
C6—C7—C8—C9−177.30 (18)C16—C17—C18—C19−0.3 (3)
C6—C7—C8—C31.1 (3)C17—C18—C19—C200.2 (3)
C4—C3—C8—C9176.27 (16)C17—C18—C19—Br1−178.80 (16)
C2—C3—C8—C9−1.8 (2)C18—C19—C20—C21−0.2 (3)
C4—C3—C8—C7−2.1 (2)Br1—C19—C20—C21178.80 (13)
C2—C3—C8—C7179.83 (16)C19—C20—C21—C160.3 (3)
C7—C8—C9—C10176.89 (18)C17—C16—C21—C20−0.5 (3)
C3—C8—C9—C10−1.5 (3)C14—C16—C21—C20178.91 (16)
C8—C9—C10—C111.8 (3)C12—C13—C23—O3−37.5 (2)
C3—C2—C11—O1173.77 (15)C1—C13—C23—O3−160.58 (17)
C1—C2—C11—O1−3.5 (3)C14—C13—C23—O384.5 (2)
C3—C2—C11—C10−4.5 (3)C12—C13—C23—O2145.27 (15)
C1—C2—C11—C10178.16 (16)C1—C13—C23—O222.1 (2)
C9—C10—C11—O1−177.08 (17)C14—C13—C23—O2−92.74 (17)
C9—C10—C11—C21.4 (3)C14—C15—N1—C22−155.30 (15)
O1—C12—C13—C23−67.90 (18)C14—C15—N1—C1−29.30 (18)
O1—C12—C13—C159.38 (18)C2—C1—N1—C22−72.26 (17)
O1—C12—C13—C14171.46 (13)C13—C1—N1—C22167.70 (13)
N1—C1—C13—C23−160.07 (13)C2—C1—N1—C15164.50 (13)
C2—C1—C13—C2378.49 (17)C13—C1—N1—C1544.46 (15)
N1—C1—C13—C1275.89 (15)C2—C11—O1—C1216.4 (2)
C2—C1—C13—C12−45.55 (18)C10—C11—O1—C12−165.22 (16)
N1—C1—C13—C14−41.73 (14)C13—C12—O1—C11−45.0 (2)
C2—C1—C13—C14−163.17 (13)O3—C23—O2—C240.2 (3)
C23—C13—C14—C16−84.11 (17)C13—C23—O2—C24177.54 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C24—H24A···Br1i0.962.843.789 (3)172
C20—H20···Cg1ii0.932.773.653 (2)160

Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2858).

References

  • Biava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). Bioorg. Med. Chem.13, 1221–1230. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Borthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem.43, 4452–4464. [PubMed]
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caine, B. (1993). Science, 260, 1814–1816. [PubMed]
  • Carlson, J. (1993). Neur. Transm 94, 11–19. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med.37, 1895–1905. [PubMed]
  • Jiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother.48, 4349–4359. [PMC free article] [PubMed]
  • Nirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1811. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tidey, J. W. (1992). Behav. Pharm.3, 553–566. [PubMed]
  • Wilner, P. (1985). Clin. Neuropharm 18, suppl.1, 549–556.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography