PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1823.
Published online 2009 July 11. doi:  10.1107/S1600536809025951
PMCID: PMC2977108

Bis[4-(3-amino­phen­oxy)phen­yl] ketone

Abstract

In the mol­ecule of the title compound, C25H20N2O3, the dihedral angles formed by adjacent benzene rings are 66.75 (8), 48.37 (8) and 71.43 (9)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For the properties and synthesis of the title compound, see: Wilson et al. (1990 [triangle]); Mehdipour-Ataei & Saidi (2008 [triangle]). For the applications of the title compound, see: Rao & Prabhakaran (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1823-scheme1.jpg

Experimental

Crystal data

  • C25H20N2O3
  • M r = 396.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1823-efi1.jpg
  • a = 7.370 (3) Å
  • b = 11.856 (3) Å
  • c = 12.319 (3) Å
  • α = 101.79 (4)°
  • β = 95.10 (4)°
  • γ = 107.86 (3)°
  • V = 989.6 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 292 K
  • 0.48 × 0.42 × 0.23 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3693 measured reflections
  • 3682 independent reflections
  • 2206 reflections with I > 2σ(I)
  • R int = 0.006
  • 3 standard reflections every 200 reflections intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.165
  • S = 1.05
  • 3682 reflections
  • 288 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025951/rz2344sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025951/rz2344Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Undergraduates’ Innovative Experiment Project of Sichuan University and thank Mr Zhi-Hua Mao of Sichuan University for the X-Ray data collection.

supplementary crystallographic information

Comment

Aromatic polyimides has found useful applications in aircraft technology, space vehicles, sea transport equipment and other applications due to their excellent thermal stability, good mechanical properties, low dielectric constants and intrinsic purity (Wilson et al., 1990). The title compound is an important raw material for the synthesis of aromatic polyimides, as the presence of ether and ketone groups connected by aromatic rings greatly improves the chain flexibility (Rao & Prabhakaran, 1992; Mehdipour-Ataei & Saidi, 2008). Herein, we report the synthesis and crystal structure of the title compound.

The structure of the title compound (Fig. 1) is not planar. The dihedral angle between the two central benzene rings, ring A (C7–C12) and ring B (C14–C19), is 48.37 (8)°. Ring A forms a dihedral angle of 66.75 (8)° with the C1–C6 benzene ring. The corresponding dihedral angle between ring B and the C20–C25 benzene ring is 71.43 (9)°. The plane formed by atoms C10, C14, O1 and C13, makes a dihedral angle of 22.28 (12)° and 31.23 (8)° with ring A and B, respectively. The crystal structure is stabilized by N—H···O hydrogen bonds (Table 1) linking centrosymmetrically related molecules into dimers.

Experimental

4,4'-Difluorobenzophenone (11.0 g, 0.05 mol), m-aminophenol (22.0 g, 0.20 mol) and anhydrous potassium carbonate (14.0 g, 0.10 mol) were dissolved in a solution of toluene (60 ml) and N,N-dimethylformamide (100 ml) in a three-necked flask. The mixture was heated to reflux and water was removed by azeotropic distillation. After complete dehydration, the mixture was poured to a large excess of ice water. Then, the precipitated solid was collected by filtration and recrystallized from ethanol to obtain a tan solid (16.5 g, 76% yield, m.p.411–413 K). Red single crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature of a toluene solution.

Refinement

H-atoms bound to nitrogen atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C25H20N2O3Z = 2
Mr = 396.43F(000) = 416
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.370 (3) ÅCell parameters from 23 reflections
b = 11.856 (3) Åθ = 5.4–5.6°
c = 12.319 (3) ŵ = 0.09 mm1
α = 101.79 (4)°T = 292 K
β = 95.10 (4)°Block, red
γ = 107.86 (3)°0.48 × 0.42 × 0.23 mm
V = 989.6 (6) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.006
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.7°
graphiteh = −8→8
ω/2θ scansk = −4→14
3693 measured reflectionsl = −14→14
3682 independent reflections3 standard reflections every 200 reflections
2206 reflections with I > 2σ(I) intensity decay: 1.5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.165w = 1/[σ2(Fo2) + (0.0943P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3682 reflectionsΔρmax = 0.23 e Å3
288 parametersΔρmin = −0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4068 (2)0.59493 (16)0.42259 (15)0.0665 (5)
O21.2554 (2)0.95837 (18)0.55618 (15)0.0746 (6)
O30.0557 (2)0.57862 (15)0.86702 (15)0.0623 (5)
N11.7663 (5)1.3024 (3)0.7708 (4)0.0988 (11)
H1N11.729 (5)1.346 (3)0.725 (3)0.116 (15)*
H2N11.840 (5)1.333 (3)0.828 (3)0.109 (15)*
N2−0.3694 (6)0.6550 (4)1.1145 (3)0.1179 (13)
H1N2−0.378 (6)0.581 (4)1.131 (3)0.119 (14)*
H2N2−0.399 (8)0.712 (5)1.153 (5)0.19 (3)*
C11.6441 (3)1.1849 (2)0.7619 (2)0.0591 (7)
C21.6600 (4)1.1216 (3)0.8431 (2)0.0655 (7)
H21.75501.15810.90640.079*
C31.5354 (4)1.0050 (3)0.8303 (2)0.0631 (7)
H31.54640.96380.88590.076*
C41.3949 (3)0.9477 (2)0.7371 (2)0.0544 (6)
H41.31150.86850.72860.065*
C51.3819 (3)1.0112 (2)0.6574 (2)0.0509 (6)
C61.5030 (3)1.1280 (2)0.6682 (2)0.0558 (7)
H61.49011.16890.61260.067*
C71.0692 (3)0.8848 (2)0.5542 (2)0.0518 (6)
C80.9903 (3)0.7910 (2)0.4600 (2)0.0549 (6)
H81.06220.77890.40310.066*
C90.8035 (3)0.7150 (2)0.4507 (2)0.0517 (6)
H90.74940.65120.38690.062*
C100.6938 (3)0.73176 (19)0.53531 (19)0.0450 (6)
C110.7750 (3)0.8300 (2)0.6275 (2)0.0511 (6)
H110.70230.84440.68340.061*
C120.9628 (3)0.9070 (2)0.6377 (2)0.0543 (6)
H121.01650.97280.70000.065*
C130.4904 (3)0.6501 (2)0.5182 (2)0.0505 (6)
C140.3844 (3)0.63592 (19)0.6137 (2)0.0451 (6)
C150.1849 (3)0.61103 (19)0.5934 (2)0.0475 (6)
H150.12560.60570.52180.057*
C160.0742 (3)0.5943 (2)0.6765 (2)0.0521 (6)
H16−0.05850.57790.66150.063*
C170.1629 (3)0.6021 (2)0.7822 (2)0.0502 (6)
C180.3584 (3)0.6242 (2)0.8042 (2)0.0552 (6)
H180.41650.62820.87570.066*
C190.4680 (3)0.6404 (2)0.7205 (2)0.0539 (6)
H190.60000.65460.73560.065*
C20−0.0391 (3)0.6582 (2)0.9107 (2)0.0470 (6)
C21−0.1542 (3)0.6200 (2)0.9866 (2)0.0560 (6)
H21−0.16920.54431.00200.067*
C22−0.2484 (4)0.6946 (3)1.0405 (2)0.0665 (7)
C23−0.2239 (4)0.8067 (3)1.0155 (3)0.0705 (8)
H23−0.28470.85841.05140.085*
C24−0.1107 (4)0.8412 (2)0.9382 (2)0.0635 (7)
H24−0.09820.91570.92100.076*
C25−0.0142 (3)0.7687 (2)0.8849 (2)0.0550 (6)
H250.06470.79370.83340.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0462 (10)0.0733 (12)0.0579 (12)0.0017 (9)−0.0019 (9)0.0004 (9)
O20.0424 (10)0.1008 (14)0.0539 (12)−0.0116 (9)0.0015 (8)0.0184 (10)
O30.0645 (11)0.0627 (10)0.0744 (13)0.0286 (9)0.0262 (10)0.0307 (9)
N10.088 (2)0.0664 (18)0.105 (3)−0.0097 (16)−0.007 (2)0.0029 (18)
N20.136 (3)0.121 (3)0.142 (3)0.069 (3)0.092 (3)0.059 (3)
C10.0427 (13)0.0545 (15)0.0680 (18)0.0079 (12)0.0060 (13)0.0026 (13)
C20.0490 (15)0.0799 (19)0.0562 (17)0.0168 (14)−0.0056 (13)0.0050 (14)
C30.0568 (16)0.0775 (18)0.0614 (18)0.0285 (14)0.0051 (14)0.0232 (15)
C40.0461 (13)0.0527 (14)0.0602 (16)0.0117 (11)0.0058 (12)0.0129 (12)
C50.0317 (11)0.0637 (15)0.0497 (15)0.0084 (11)0.0058 (11)0.0092 (12)
C60.0421 (13)0.0581 (15)0.0662 (17)0.0109 (12)0.0091 (12)0.0217 (13)
C70.0373 (12)0.0609 (15)0.0496 (15)0.0040 (11)0.0012 (11)0.0184 (12)
C80.0405 (13)0.0699 (16)0.0527 (16)0.0158 (12)0.0086 (11)0.0151 (13)
C90.0449 (13)0.0532 (14)0.0467 (15)0.0110 (11)−0.0030 (11)0.0025 (11)
C100.0368 (12)0.0481 (13)0.0460 (14)0.0111 (10)−0.0010 (10)0.0101 (11)
C110.0395 (13)0.0554 (14)0.0544 (16)0.0122 (11)0.0072 (11)0.0107 (12)
C120.0446 (14)0.0606 (15)0.0450 (14)0.0052 (11)−0.0002 (11)0.0075 (11)
C130.0394 (13)0.0462 (13)0.0580 (17)0.0100 (11)−0.0019 (12)0.0062 (12)
C140.0324 (11)0.0424 (12)0.0548 (15)0.0075 (9)−0.0002 (10)0.0100 (11)
C150.0379 (12)0.0471 (13)0.0491 (14)0.0094 (10)−0.0064 (11)0.0066 (11)
C160.0331 (12)0.0540 (14)0.0647 (17)0.0119 (10)0.0018 (12)0.0109 (12)
C170.0476 (14)0.0433 (12)0.0589 (16)0.0128 (10)0.0094 (12)0.0140 (11)
C180.0460 (14)0.0611 (15)0.0527 (16)0.0105 (11)−0.0043 (12)0.0176 (12)
C190.0336 (12)0.0553 (14)0.0661 (17)0.0072 (10)−0.0026 (12)0.0167 (12)
C200.0384 (12)0.0478 (13)0.0482 (14)0.0095 (10)−0.0022 (11)0.0089 (11)
C210.0472 (13)0.0560 (15)0.0651 (17)0.0156 (12)0.0063 (12)0.0189 (13)
C220.0605 (17)0.0778 (19)0.0654 (19)0.0269 (15)0.0164 (14)0.0179 (15)
C230.0716 (19)0.0689 (18)0.072 (2)0.0342 (15)0.0058 (16)0.0045 (15)
C240.0725 (18)0.0523 (15)0.0602 (18)0.0216 (14)−0.0049 (14)0.0076 (13)
C250.0520 (14)0.0529 (14)0.0546 (16)0.0118 (12)0.0022 (12)0.0128 (12)

Geometric parameters (Å, °)

O1—C131.226 (3)C10—C111.384 (3)
O2—C71.377 (3)C10—C131.484 (3)
O2—C51.390 (3)C11—C121.383 (3)
O3—C171.387 (3)C11—H110.9300
O3—C201.390 (3)C12—H120.9300
N1—C11.384 (4)C13—C141.478 (3)
N1—H1N10.92 (4)C14—C191.386 (3)
N1—H2N10.79 (4)C14—C151.396 (3)
N2—C221.383 (4)C15—C161.373 (3)
N2—H1N20.93 (4)C15—H150.9300
N2—H2N20.84 (5)C16—C171.377 (3)
C1—C61.381 (4)C16—H160.9300
C1—C21.384 (4)C17—C181.374 (3)
C2—C31.373 (4)C18—C191.374 (3)
C2—H20.9300C18—H180.9300
C3—C41.375 (4)C19—H190.9300
C3—H30.9300C20—C211.370 (3)
C4—C51.368 (3)C20—C251.373 (3)
C4—H40.9300C21—C221.387 (4)
C5—C61.370 (3)C21—H210.9300
C6—H60.9300C22—C231.387 (4)
C7—C81.371 (3)C23—C241.364 (4)
C7—C121.379 (3)C23—H230.9300
C8—C91.374 (3)C24—C251.380 (4)
C8—H80.9300C24—H240.9300
C9—C101.394 (3)C25—H250.9300
C9—H90.9300
C7—O2—C5120.22 (19)C7—C12—H12120.5
C17—O3—C20119.63 (18)C11—C12—H12120.5
C1—N1—H1N1117 (2)O1—C13—C14119.2 (2)
C1—N1—H2N1115 (3)O1—C13—C10119.3 (2)
H1N1—N1—H2N1124 (4)C14—C13—C10121.5 (2)
C22—N2—H1N2118 (2)C19—C14—C15117.8 (2)
C22—N2—H2N2112 (4)C19—C14—C13124.5 (2)
H1N2—N2—H2N2127 (5)C15—C14—C13117.6 (2)
C6—C1—N1119.0 (3)C16—C15—C14121.7 (2)
C6—C1—C2118.8 (2)C16—C15—H15119.2
N1—C1—C2122.2 (3)C14—C15—H15119.2
C3—C2—C1120.1 (3)C15—C16—C17118.9 (2)
C3—C2—H2120.0C15—C16—H16120.6
C1—C2—H2120.0C17—C16—H16120.6
C2—C3—C4121.5 (3)C18—C17—C16120.8 (2)
C2—C3—H3119.2C18—C17—O3118.1 (2)
C4—C3—H3119.2C16—C17—O3121.0 (2)
C5—C4—C3117.7 (2)C19—C18—C17119.9 (2)
C5—C4—H4121.2C19—C18—H18120.0
C3—C4—H4121.2C17—C18—H18120.0
C4—C5—C6122.2 (2)C18—C19—C14120.9 (2)
C4—C5—O2122.2 (2)C18—C19—H19119.6
C6—C5—O2115.4 (2)C14—C19—H19119.6
C5—C6—C1119.8 (2)C21—C20—C25122.1 (2)
C5—C6—H6120.1C21—C20—O3114.4 (2)
C1—C6—H6120.1C25—C20—O3123.5 (2)
C8—C7—O2115.7 (2)C20—C21—C22119.7 (2)
C8—C7—C12121.3 (2)C20—C21—H21120.1
O2—C7—C12122.9 (2)C22—C21—H21120.1
C7—C8—C9119.2 (2)N2—C22—C21120.0 (3)
C7—C8—H8120.4N2—C22—C23121.2 (3)
C9—C8—H8120.4C21—C22—C23118.8 (3)
C8—C9—C10121.1 (2)C24—C23—C22120.0 (3)
C8—C9—H9119.4C24—C23—H23120.0
C10—C9—H9119.4C22—C23—H23120.0
C11—C10—C9118.4 (2)C23—C24—C25121.9 (2)
C11—C10—C13122.8 (2)C23—C24—H24119.0
C9—C10—C13118.6 (2)C25—C24—H24119.0
C12—C11—C10120.9 (2)C20—C25—C24117.4 (2)
C12—C11—H11119.5C20—C25—H25121.3
C10—C11—H11119.5C24—C25—H25121.3
C7—C12—C11119.0 (2)
C6—C1—C2—C3−0.7 (4)O1—C13—C14—C19147.9 (2)
N1—C1—C2—C3−179.9 (3)C10—C13—C14—C19−33.6 (3)
C1—C2—C3—C40.9 (4)O1—C13—C14—C15−29.1 (3)
C2—C3—C4—C5−0.5 (4)C10—C13—C14—C15149.3 (2)
C3—C4—C5—C6−0.1 (4)C19—C14—C15—C161.5 (3)
C3—C4—C5—O2174.8 (2)C13—C14—C15—C16178.8 (2)
C7—O2—C5—C443.0 (3)C14—C15—C16—C17−0.1 (3)
C7—O2—C5—C6−141.8 (2)C15—C16—C17—C18−1.1 (3)
C4—C5—C6—C10.2 (4)C15—C16—C17—O3−176.1 (2)
O2—C5—C6—C1−174.9 (2)C20—O3—C17—C18116.9 (2)
N1—C1—C6—C5179.4 (3)C20—O3—C17—C16−68.0 (3)
C2—C1—C6—C50.1 (4)C16—C17—C18—C190.9 (4)
C5—O2—C7—C8−147.3 (2)O3—C17—C18—C19176.0 (2)
C5—O2—C7—C1236.4 (4)C17—C18—C19—C140.6 (4)
O2—C7—C8—C9−178.7 (2)C15—C14—C19—C18−1.8 (3)
C12—C7—C8—C9−2.4 (4)C13—C14—C19—C18−178.8 (2)
C7—C8—C9—C100.0 (4)C17—O3—C20—C21174.4 (2)
C8—C9—C10—C112.4 (3)C17—O3—C20—C25−8.5 (3)
C8—C9—C10—C13177.4 (2)C25—C20—C21—C22−0.5 (4)
C9—C10—C11—C12−2.4 (3)O3—C20—C21—C22176.6 (2)
C13—C10—C11—C12−177.1 (2)C20—C21—C22—N2178.0 (3)
C8—C7—C12—C112.4 (4)C20—C21—C22—C230.3 (4)
O2—C7—C12—C11178.4 (2)N2—C22—C23—C24−177.0 (3)
C10—C11—C12—C70.1 (4)C21—C22—C23—C240.8 (4)
C11—C10—C13—O1154.3 (2)C22—C23—C24—C25−1.6 (4)
C9—C10—C13—O1−20.4 (3)C21—C20—C25—C24−0.2 (4)
C11—C10—C13—C14−24.2 (3)O3—C20—C25—C24−177.1 (2)
C9—C10—C13—C14161.1 (2)C23—C24—C25—C201.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.92 (4)2.32 (4)3.223 (5)164 (3)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2344).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.
  • Mehdipour-Ataei, S. & Saidi, S. (2008). Polym. Adv. Technol.19, 889-894.
  • Rao, V. L. & Prabhakaran, P. V. (1992). Eur. Polym. J.28, 363–366.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wilson, D., Stengenberger, H. D. & Hergenrother, P. M. (1990). In Polyimides New York: Chapman and Hall.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography