PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m1002–m1003.
Published online 2009 July 29. doi:  10.1107/S1600536809029638
PMCID: PMC2977107

Bis(2,2′-diamino-4,4′-bi-1,3-thia­zole-κ2 N 3,N 3′)bis­(nitrato-κO)lead(II) dihydrate

Abstract

In the title compound, [Pb(NO3)2(C6H6N4S2)2]·2H2O, the PbII cation is N,N′-chelated by two 2,2′-diamino-4,4′-bi-1,3-thia­zole (DABT) ligands and further is cis coordinated by two nitrate anions in a distorted PbN4O2 octa­hedral geometry. One of the uncoordinated water mol­ecules is close to an inversion center and is disordered equally over two sites. Intra­molecular N—H(...)N and N—H(...)O inter­actions are present. An extensive hydrogen-bonding network of types N—H(...)O, O—H(...)O, O—H(...)N and O—H(...)S consolidates the crystal structure.

Related literature

For the application of 2,2′-diamino-4,4′-bi-1,3-thia­zole complexes as soft magnetic materials, see: Sun et al. (1997 [triangle]). For general background to the structures of complexes of 2,2′-diamino-4,4′-bi-1,3-thia­zole, see: Liu et al. (2003 [triangle]). For Pb—N bond distances in 2,2′-diamino-4,4′-bi-1,3-thia­zole complexes, see: Abedini et al. (2005 [triangle]); Liu et al. (2006 [triangle]). H atoms bonded to the disordered O atoms were placed in calculated positions, see: Nardelli (1999 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-m1002-scheme1.jpg

Experimental

Crystal data

  • [Pb(NO3)2(C6H6N4S2)2]·2H2O
  • M r = 1527.66
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1002-efi1.jpg
  • a = 9.2387 (8) Å
  • b = 9.6962 (9) Å
  • c = 13.5636 (6) Å
  • α = 105.731 (4)°
  • β = 90.377 (3)°
  • γ = 97.072 (5)°
  • V = 1159.61 (16) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 7.70 mm−1
  • T = 294 K
  • 0.21 × 0.16 × 0.14 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.215, T max = 0.340
  • 6095 measured reflections
  • 4012 independent reflections
  • 3705 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.065
  • S = 1.08
  • 4012 reflections
  • 319 parameters
  • H-atom parameters constrained
  • Δρmax = 0.83 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029638/hk2747sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029638/hk2747Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

supplementary crystallographic information

Comment

Some metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997). As part of the ongoing structural investigation of metal complexes with DABT ligand (Liu et al., 2003), the title PbII complex has recently been prepared and its crystal structure is reported herein.

In the title compound, the PbII cation is N,N'-chelated by two DABT ligands and further is cis-coordinated by two nitrate anions in a distorted PbN4O2 octahedral geometry (Fig. 1). The Pb—N bond distances (Table 1) are somewhat longer than those [2.527, 2.544 and 2.551 Å] found in other two Pb complexes with DABT ligand (Abedini et al. 2005; Liu et al. 2006). One of the lattice water molecules is close to an inversion center and is disordered equally over two sites. The extensive hydrogen bonding network of types N—H···O, O—H···O, O—H···N and O—H···S is present in the crystal structure.

Experimental

An aqueous solution (15 ml) of DABT (0.20 g, 1 mmol) and Pb(NO3)2 (0.33 g, 1 mmol) was refluxed for 4 h. The solution was filtered after cooling to room temperature. Yellow single crystals were obtained from the filtrate after 4 d.

Refinement

One of the lattice water molecules [O2W] is close to an inversion center and is disordered equally over two sites. H atoms bonded to the disordered O atoms are placed in calculated position (Nardelli, 1999). H atoms bonded to the O1W and N atoms were located in a difference Fourier map. All H atoms bonded to O and N atoms were refined as riding in as-found relative positions. Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode. Uiso(H) = 1.2Ueq(carrier) for all H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms); dashed lines indicate the hydrogen bonding.

Crystal data

[Pb(NO3)2(C6H6N4S2)2]·2H2OZ = 1
Mr = 1527.66F(000) = 736
Triclinic, P1Dx = 2.187 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2387 (8) ÅCell parameters from 4246 reflections
b = 9.6962 (9) Åθ = 2.2–25.0°
c = 13.5636 (6) ŵ = 7.70 mm1
α = 105.731 (4)°T = 294 K
β = 90.377 (3)°Block, yellow
γ = 97.072 (5)°0.21 × 0.16 × 0.14 mm
V = 1159.61 (16) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer4012 independent reflections
Radiation source: fine-focus sealed tube3705 reflections with I > 2σ(I)
graphiteRint = 0.015
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scansh = −9→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −9→11
Tmin = 0.215, Tmax = 0.340l = −16→15
6095 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0293P)2 + 1.6634P] where P = (Fo2 + 2Fc2)/3
4012 reflections(Δ/σ)max = 0.004
319 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pb0.51296 (2)0.384529 (19)0.321343 (15)0.03622 (8)
S10.86425 (18)0.07481 (19)0.43924 (14)0.0634 (4)
S20.20076 (16)−0.09836 (15)0.28488 (12)0.0527 (4)
S30.6251 (3)0.1416 (2)−0.04539 (14)0.0887 (6)
S40.1267 (3)0.5374 (2)0.10337 (14)0.0845 (6)
N10.6815 (5)0.2053 (5)0.3667 (3)0.0462 (11)
N20.9129 (5)0.3416 (6)0.4149 (5)0.0660 (15)
H2A0.90590.41680.38620.079*
H2B1.01040.34410.42330.079*
N30.3856 (4)0.1266 (4)0.2963 (3)0.0395 (9)
N40.1501 (5)0.1384 (5)0.2314 (4)0.0614 (14)
H4A0.18520.23690.22540.074*
H4B0.09710.07530.18160.074*
N50.5432 (6)0.2735 (5)0.1318 (3)0.0537 (12)
N60.7467 (8)0.1533 (8)0.1351 (5)0.101 (2)
H6A0.72410.14440.20030.121*
H6B0.80600.07730.11330.121*
N70.3075 (5)0.4293 (5)0.1959 (3)0.0450 (10)
N80.1492 (5)0.5684 (5)0.3050 (4)0.0566 (12)
H8A0.06130.59790.30090.068*
H8B0.17610.54430.35640.068*
N90.2813 (5)0.3333 (5)0.4915 (3)0.0417 (10)
N100.7714 (5)0.5968 (5)0.2504 (4)0.0499 (11)
O10.7860 (4)0.4915 (5)0.2859 (4)0.0662 (12)
O20.6464 (4)0.6191 (5)0.2306 (3)0.0637 (11)
O30.8811 (5)0.6758 (5)0.2381 (4)0.0757 (13)
O40.2622 (5)0.4100 (5)0.4368 (4)0.0767 (14)
O50.4074 (4)0.3241 (4)0.5214 (3)0.0583 (10)
O60.1759 (5)0.2579 (6)0.5126 (4)0.0799 (14)
C10.8164 (6)0.2223 (6)0.4046 (4)0.0465 (13)
C20.6914 (7)−0.0124 (7)0.4019 (5)0.0649 (17)
H20.6586−0.10550.40530.078*
C30.6101 (6)0.0701 (5)0.3673 (4)0.0417 (11)
C40.4582 (6)0.0295 (5)0.3302 (4)0.0406 (11)
C50.3759 (6)−0.0963 (6)0.3282 (5)0.0536 (14)
H50.4097−0.17190.34760.064*
C60.2493 (6)0.0720 (5)0.2691 (4)0.0433 (12)
C70.6410 (8)0.1928 (7)0.0868 (5)0.0664 (17)
C80.4800 (9)0.2367 (9)−0.0394 (5)0.082 (2)
H80.42760.2442−0.09610.099*
C90.4521 (7)0.2994 (6)0.0586 (4)0.0565 (15)
C100.3355 (7)0.3902 (6)0.0933 (4)0.0528 (14)
C110.2503 (10)0.4381 (8)0.0331 (5)0.084 (2)
H110.25730.4198−0.03750.100*
C120.2007 (6)0.5091 (6)0.2119 (4)0.0479 (13)
O1W0.8919 (7)0.9099 (6)0.1556 (7)0.143 (3)
H1A0.87680.84200.18480.172*
H1B0.90250.86870.09460.172*
O2WA0.952 (12)0.968 (9)−0.012 (7)0.46 (3)0.50
H2C0.87120.9381−0.04590.553*0.50
H2D1.01930.9627−0.05530.553*0.50
O2WB1.007 (6)0.784 (5)−0.045 (3)0.46 (3)0.50
H2E0.98150.6950−0.05070.553*0.50
H2F1.09800.7961−0.05380.553*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb0.03230 (12)0.03302 (12)0.04414 (12)0.00269 (8)0.00326 (8)0.01255 (8)
S10.0507 (9)0.0742 (11)0.0805 (11)0.0126 (8)−0.0077 (8)0.0450 (9)
S20.0488 (8)0.0411 (7)0.0670 (9)−0.0075 (6)0.0027 (7)0.0187 (7)
S30.1077 (16)0.1029 (15)0.0530 (10)0.0293 (13)0.0292 (10)0.0096 (10)
S40.1085 (16)0.0875 (13)0.0631 (11)0.0429 (12)−0.0244 (10)0.0174 (9)
N10.038 (2)0.045 (2)0.060 (3)0.010 (2)0.002 (2)0.021 (2)
N20.035 (3)0.062 (3)0.109 (5)−0.001 (2)−0.009 (3)0.041 (3)
N30.038 (2)0.036 (2)0.045 (2)0.0012 (18)0.0018 (18)0.0118 (18)
N40.047 (3)0.051 (3)0.091 (4)−0.007 (2)−0.019 (3)0.033 (3)
N50.063 (3)0.055 (3)0.047 (3)0.016 (2)0.013 (2)0.018 (2)
N60.114 (6)0.131 (6)0.068 (4)0.079 (5)0.023 (4)0.017 (4)
N70.044 (3)0.049 (3)0.047 (3)0.004 (2)−0.002 (2)0.022 (2)
N80.047 (3)0.071 (3)0.061 (3)0.018 (2)0.005 (2)0.028 (3)
N90.035 (2)0.052 (3)0.038 (2)0.001 (2)0.0006 (18)0.014 (2)
N100.047 (3)0.053 (3)0.053 (3)0.005 (2)0.005 (2)0.020 (2)
O10.047 (2)0.061 (3)0.104 (4)0.005 (2)0.003 (2)0.047 (3)
O20.050 (3)0.075 (3)0.076 (3)0.013 (2)−0.006 (2)0.034 (2)
O30.054 (3)0.075 (3)0.113 (4)−0.003 (2)0.013 (3)0.055 (3)
O40.069 (3)0.078 (3)0.112 (4)0.033 (3)0.034 (3)0.064 (3)
O50.047 (2)0.066 (3)0.057 (2)0.0002 (19)−0.0071 (19)0.012 (2)
O60.050 (3)0.100 (4)0.098 (4)−0.015 (3)−0.006 (2)0.052 (3)
C10.039 (3)0.055 (3)0.053 (3)0.011 (3)0.004 (2)0.024 (3)
C20.057 (4)0.057 (4)0.093 (5)0.003 (3)−0.007 (3)0.042 (3)
C30.043 (3)0.042 (3)0.044 (3)0.006 (2)0.005 (2)0.017 (2)
C40.041 (3)0.037 (3)0.045 (3)0.006 (2)0.008 (2)0.013 (2)
C50.051 (3)0.041 (3)0.074 (4)0.003 (3)0.001 (3)0.026 (3)
C60.046 (3)0.038 (3)0.042 (3)−0.002 (2)0.002 (2)0.008 (2)
C70.075 (5)0.069 (4)0.055 (4)0.022 (4)0.014 (3)0.012 (3)
C80.092 (6)0.101 (6)0.050 (4)0.014 (5)0.003 (4)0.013 (4)
C90.068 (4)0.055 (3)0.046 (3)−0.001 (3)0.006 (3)0.016 (3)
C100.068 (4)0.045 (3)0.045 (3)0.006 (3)−0.001 (3)0.011 (2)
C110.123 (7)0.090 (5)0.044 (3)0.032 (5)−0.010 (4)0.021 (3)
C120.048 (3)0.042 (3)0.055 (3)−0.002 (3)−0.010 (3)0.020 (3)
O1W0.117 (5)0.087 (4)0.240 (9)−0.022 (4)−0.075 (6)0.087 (5)
O2WA0.66 (8)0.50 (7)0.31 (4)0.30 (6)0.16 (4)0.17 (4)
O2WB0.66 (8)0.50 (7)0.31 (4)0.30 (6)0.16 (4)0.17 (4)

Geometric parameters (Å, °)

Pb—N12.656 (4)N7—C121.311 (7)
Pb—N32.563 (4)N7—C101.375 (7)
Pb—N52.535 (5)N8—C121.354 (7)
Pb—N72.692 (4)N8—H8A0.8999
Pb—O12.704 (4)N8—H8B0.8393
Pb—O42.803 (5)N9—O41.210 (6)
S1—C21.717 (7)N9—O61.227 (6)
S1—C11.726 (5)N9—O51.252 (5)
S2—C51.714 (6)N10—O31.233 (6)
S2—C61.728 (5)N10—O21.242 (6)
S3—C81.709 (8)N10—O11.262 (6)
S3—C71.726 (7)C2—C31.330 (7)
S4—C111.710 (8)C2—H20.9300
S4—C121.720 (5)C3—C41.458 (7)
N1—C11.319 (7)C4—C51.349 (7)
N1—C31.395 (6)C5—H50.9300
N2—C11.345 (7)C8—C91.344 (9)
N2—H2A0.9230C8—H80.9300
N2—H2B0.9039C9—C101.474 (8)
N3—C61.313 (6)C10—C111.338 (9)
N3—C41.390 (6)C11—H110.9300
N4—C61.355 (7)O1W—H1A0.8534
N4—H4A0.9949O1W—H1B0.8279
N4—H4B0.8762O2WA—O2WAi1.0 (2)
N5—C71.313 (8)O2WA—H2C0.8498
N5—C91.391 (8)O2WA—H2D0.8500
N6—C71.323 (9)O2WB—H2E0.8502
N6—H6A0.9337O2WB—H2F0.8500
N6—H6B0.9558
N5—Pb—N378.40 (14)O3—N10—O1119.2 (5)
N5—Pb—N190.14 (15)O2—N10—O1118.7 (5)
N3—Pb—N165.73 (13)N10—O1—Pb105.8 (3)
N5—Pb—N764.98 (15)N1—C1—N2124.6 (5)
N3—Pb—N789.39 (13)N1—C1—S1114.4 (4)
N1—Pb—N7148.47 (14)N2—C1—S1121.0 (4)
N5—Pb—O175.24 (16)C3—C2—S1111.4 (5)
N3—Pb—O1132.73 (13)C3—C2—H2124.3
N1—Pb—O175.77 (13)S1—C2—H2124.3
N7—Pb—O1113.10 (13)C2—C3—N1115.0 (5)
C2—S1—C189.0 (3)C2—C3—C4125.6 (5)
C5—S2—C689.2 (3)N1—C3—C4119.4 (4)
C8—S3—C789.4 (3)C5—C4—N3114.7 (5)
C11—S4—C1288.7 (3)C5—C4—C3125.5 (5)
C1—N1—C3110.2 (4)N3—C4—C3119.7 (4)
C1—N1—Pb133.5 (4)C4—C5—S2111.0 (4)
C3—N1—Pb115.4 (3)C4—C5—H5124.5
C1—N2—H2A127.5S2—C5—H5124.5
C1—N2—H2B123.9N3—C6—N4125.3 (5)
H2A—N2—H2B102.7N3—C6—S2114.5 (4)
C6—N3—C4110.5 (4)N4—C6—S2120.2 (4)
C6—N3—Pb130.0 (3)N5—C7—N6124.9 (6)
C4—N3—Pb118.7 (3)N5—C7—S3114.5 (5)
C6—N4—H4A115.8N6—C7—S3120.6 (5)
C6—N4—H4B109.5C9—C8—S3110.7 (6)
H4A—N4—H4B120.6C9—C8—H8124.7
C7—N5—C9110.0 (5)S3—C8—H8124.7
C7—N5—Pb129.2 (4)C8—C9—N5115.4 (6)
C9—N5—Pb120.7 (4)C8—C9—C10126.0 (6)
C7—N6—H6A114.4N5—C9—C10118.7 (5)
C7—N6—H6B131.4C11—C10—N7115.5 (6)
H6A—N6—H6B100.3C11—C10—C9125.7 (6)
C12—N7—C10109.9 (5)N7—C10—C9118.8 (5)
C12—N7—Pb132.8 (4)C10—C11—S4110.9 (5)
C10—N7—Pb115.3 (3)C10—C11—H11124.5
C12—N8—H8A112.9S4—C11—H11124.5
C12—N8—H8B120.1N7—C12—N8124.8 (5)
H8A—N8—H8B121.3N7—C12—S4115.0 (4)
O4—N9—O6119.0 (5)N8—C12—S4120.3 (4)
O4—N9—O5120.7 (5)H1A—O1W—H1B105.1
O6—N9—O5120.1 (5)H2C—O2WA—H2D107.7
O3—N10—O2122.1 (5)H2E—O2WB—H2F107.7

Symmetry codes: (i) −x+2, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.922.082.884 (8)145
N2—H2B···O4ii0.902.333.209 (7)165
N2—H2B···O6ii0.902.313.057 (7)140
N4—H4A···N70.992.193.168 (7)166
N4—H4B···O1Wiii0.882.293.015 (8)141
N4—H4B···O2WAiv0.882.262.98 (9)140
N6—H6A···N10.932.223.119 (8)160
N6—H6B···O2WAv0.962.293.12 (10)145
N6—H6B···O1Wv0.962.102.929 (10)144
N8—H8A···O3vi0.902.173.027 (7)159
N8—H8B···O40.842.132.916 (7)156
O1W—H1A···O30.851.942.782 (8)168
O1W—H1B···O2WA0.831.972.54 (9)125
O1W—H1B···O2WB0.832.142.93 (4)160
O2WA—H2C···N4iv0.852.422.98 (9)124
O2WA—H2D···O1Wi0.852.172.85 (9)136
O2WB—H2E···S4iv0.852.273.09 (5)164
O2WB—H2F···S3vii0.852.803.53 (5)144
O2WB—H2F···N6vii0.851.912.67 (5)148

Symmetry codes: (ii) x+1, y, z; (iii) x−1, y−1, z; (iv) −x+1, −y+1, −z; (v) x, y−1, z; (vi) x−1, y, z; (i) −x+2, −y+2, −z; (vii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2747).

References

  • Abedini, J., Morsali, A., Kempe, R. & Hertle, I. (2005). J. Coord. Chem.58, 1719–1726.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2006). Acta Cryst. E62, m2122–m2124.
  • Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem.56, 71–76.
  • Nardelli, M. (1999). J. Appl. Cryst.32, 563–571.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, W.-L., Gao, X. & Lu, F.-J. (1997). Appl. Polym. Sci.64, 2309–2315.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography