PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1845.
Published online 2009 July 11. doi:  10.1107/S1600536809024271
PMCID: PMC2977104

N-(2-Nitro­phen­yl)benzamide

Abstract

In the title compound, C13H10N2O3, the central C–C(=O)–N–C amide unit makes dihedral angles of 21.68 (4) and 19.08 (4)°, respectively, with the phenyl and nitro­benzene rings. The two aromatic rings are inclined at 3.74 (3)° and the nitro group is skewed out of the attached benzene ring plane by 18.55 (8)°. An intra­molecular N—H(...)O inter­action to an O atom of the nitro substituent generates an S(6) ring motif. In the crystal, C—H(...)O contacts generate two centrosymmetric ring systems with R 2 2(14) and R 2 2(20) graph-set motifs, forming zigzag chains down the a axis. π–π inter­actions between adjacent phenyl and nitro­benzene rings [centroid–centroid distance = 3.6849 (6) Å] also form centrosymmetric dimers. These and an additional C—H(...)O hydrogen bond generate an extensive three-dimensional network structure.

Related literature

For the biological activity of benzamide derivatives see Saeed et al. (2008 [triangle]). For related structures, see: Cronin et al. (2000 [triangle]); Glidewell et al. (2004 [triangle]); Wardell et al. (2005 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1845-scheme1.jpg

Experimental

Crystal data

  • C13H10N2O3
  • M r = 242.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1845-efi1.jpg
  • a = 7.2061 (5) Å
  • b = 7.4253 (5) Å
  • c = 20.6031 (13) Å
  • β = 93.560 (4)°
  • V = 1100.29 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 89 K
  • 0.24 × 0.17 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.852, T max = 0.991
  • 20195 measured reflections
  • 3948 independent reflections
  • 3098 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.118
  • S = 1.06
  • 3948 reflections
  • 167 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2009 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024271/at2824sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024271/at2824Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

The biological activity and applications of benzamide derivatives have been described in an earlier paper (Saeed et al. 2008a). This paper reports the structure of a nitrophenyl benzamide derivative, (I), Fig. 1. The C2–C1(O1)–N1–C8 amide unit makes dihedral angles of 21.68 (4) ° and 19.08 (4) ° with the C2–C7 and C8–C13 rings respectively. The two aromatic rings are inclined at 3.74 (3)° with the nitro group skewed out of the C8–C13 ring plane by 18.55 (8)°. An intramolecular N1—H1N···O3 interaction generates an S6 ring motif. Bond lengths in the molecule are normal (Allen et al. 1987) and comparable to those observed in similar structures (Cronin et al., 2000; Glidewell et al., 2004; Wardell et al., 2005).

In the crystal C12—H12···O1 and C6—H6···O3 contacts generate two centrosymmetric ring systems with R22(14) and R22(20) graph set motifs respectively, forming zigzag chains down the a axis, Fig 2. π–π interactions between adjacent C2–C7 and C8–C13 rings [Cg···Cg distance 3.6849 (6) Å] also form centrosymmetric dimers, Fig 3. These and an additional C10—H10···O2 hydrogen bond generate an extensive three dimensional network structure, Fig. 4.

Experimental

Freshly distilled benzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (81%) as white plates: Analysis calculated for C13H10N2O3: C 64.46, H 4.16, N 11.56%; found: C 64.39, H 4.21, N 11.71%

Refinement

The H atom bound to N1 was located in a difference Fourier map and refined freely with an isotropic displacement parameter. The remaining aromatic H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C).

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. An intramolecular hydrogen bond is drawn as a dashed line.
Fig. 2.
Pairs of centrosymmetric dimers forming a chain running down b axis. Hydrogen bonds are drawn as dashed lines.
Fig. 3.
Centrosymmetric dimers formed through π–π stacking interactions shown as dotted lines with coloured circles representing the ring centroids. The symmetry operation relating the two molecules is 1 - x, -y, 1 - z.
Fig. 4.
Crystal packing of (I) viewed down the a axis.

Crystal data

C13H10N2O3F(000) = 504
Mr = 242.23Dx = 1.462 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4696 reflections
a = 7.2061 (5) Åθ = 2.8–31.8°
b = 7.4253 (5) ŵ = 0.11 mm1
c = 20.6031 (13) ÅT = 89 K
β = 93.560 (4)°Plate, colourless
V = 1100.29 (13) Å30.24 × 0.17 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3948 independent reflections
Radiation source: fine-focus sealed tube3098 reflections with I > 2σ(I)
graphiteRint = 0.037
ω scansθmax = 33.3°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −10→10
Tmin = 0.852, Tmax = 0.991k = −11→10
20195 measured reflectionsl = −30→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0629P)2 + 0.2001P] where P = (Fo2 + 2Fc2)/3
3948 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.73812 (11)0.03317 (11)0.50049 (4)0.01315 (16)
H1N0.678 (2)−0.064 (2)0.5129 (7)0.031 (4)*
O10.87401 (11)0.16410 (10)0.41448 (4)0.01879 (17)
C10.78498 (13)0.04075 (12)0.43690 (4)0.01259 (17)
C20.71690 (13)−0.11570 (12)0.39614 (4)0.01239 (17)
C30.70064 (14)−0.09052 (13)0.32883 (5)0.01564 (19)
H30.73150.02260.31090.019*
C40.63950 (14)−0.23021 (14)0.28797 (5)0.01771 (19)
H40.6275−0.21200.24230.021*
C50.59588 (14)−0.39666 (14)0.31405 (5)0.0176 (2)
H50.5543−0.49210.28610.021*
C60.61305 (14)−0.42356 (13)0.38095 (5)0.01679 (19)
H60.5840−0.53760.39860.020*
C70.67274 (13)−0.28349 (13)0.42198 (5)0.01451 (18)
H70.6836−0.30180.46770.017*
C80.78625 (12)0.15306 (12)0.55126 (4)0.01171 (17)
C90.78085 (13)0.09917 (12)0.61677 (4)0.01252 (17)
N20.72463 (12)−0.08197 (11)0.63520 (4)0.01487 (17)
O20.76511 (13)−0.13362 (11)0.69076 (4)0.0268 (2)
O30.63473 (11)−0.17725 (10)0.59477 (3)0.01818 (16)
C100.82755 (13)0.21653 (14)0.66792 (5)0.01574 (19)
H100.82350.17650.71160.019*
C110.87973 (14)0.39107 (14)0.65503 (5)0.0184 (2)
H110.91120.47200.68970.022*
C120.88585 (14)0.44738 (13)0.59089 (5)0.01733 (19)
H120.92180.56750.58200.021*
C130.84023 (13)0.33090 (12)0.53965 (5)0.01466 (18)
H130.84570.37230.49620.018*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0166 (4)0.0113 (4)0.0116 (3)−0.0039 (3)0.0014 (3)−0.0001 (3)
O10.0249 (4)0.0136 (3)0.0186 (3)−0.0056 (3)0.0078 (3)−0.0007 (3)
C10.0126 (4)0.0114 (4)0.0139 (4)0.0010 (3)0.0017 (3)0.0002 (3)
C20.0119 (4)0.0119 (4)0.0133 (4)0.0005 (3)0.0010 (3)−0.0004 (3)
C30.0179 (4)0.0153 (4)0.0140 (4)0.0009 (3)0.0023 (3)0.0007 (3)
C40.0190 (5)0.0201 (5)0.0139 (4)0.0021 (4)0.0000 (3)−0.0023 (3)
C50.0149 (4)0.0179 (5)0.0198 (4)0.0004 (3)−0.0011 (3)−0.0060 (4)
C60.0162 (4)0.0127 (4)0.0214 (5)−0.0012 (3)0.0006 (3)−0.0013 (3)
C70.0154 (4)0.0128 (4)0.0153 (4)−0.0001 (3)0.0010 (3)0.0005 (3)
C80.0102 (4)0.0115 (4)0.0135 (4)0.0003 (3)0.0009 (3)−0.0008 (3)
C90.0126 (4)0.0109 (4)0.0140 (4)0.0005 (3)0.0009 (3)−0.0002 (3)
N20.0181 (4)0.0137 (4)0.0130 (3)0.0016 (3)0.0023 (3)0.0012 (3)
O20.0434 (5)0.0226 (4)0.0139 (3)0.0000 (3)−0.0016 (3)0.0063 (3)
O30.0239 (4)0.0138 (3)0.0168 (3)−0.0041 (3)0.0013 (3)0.0000 (2)
C100.0149 (4)0.0179 (4)0.0143 (4)0.0022 (3)−0.0001 (3)−0.0030 (3)
C110.0158 (4)0.0182 (5)0.0212 (5)−0.0008 (4)0.0016 (4)−0.0082 (4)
C120.0148 (4)0.0125 (4)0.0252 (5)−0.0023 (3)0.0054 (4)−0.0038 (4)
C130.0145 (4)0.0117 (4)0.0180 (4)−0.0009 (3)0.0035 (3)0.0000 (3)

Geometric parameters (Å, °)

N1—C11.3742 (11)C7—H70.9500
N1—C81.4006 (12)C8—C131.4014 (13)
N1—H1N0.887 (16)C8—C91.4107 (13)
O1—C11.2250 (11)C9—C101.3925 (13)
C1—C21.4981 (13)C9—N21.4617 (12)
C2—C31.3971 (12)N2—O21.2251 (10)
C2—C71.3992 (13)N2—O31.2439 (11)
C3—C41.3902 (14)C10—C111.3799 (14)
C3—H30.9500C10—H100.9500
C4—C51.3915 (15)C11—C121.3893 (15)
C4—H40.9500C11—H110.9500
C5—C61.3906 (14)C12—C131.3883 (13)
C5—H50.9500C12—H120.9500
C6—C71.3914 (13)C13—H130.9500
C6—H60.9500
C1—N1—C8128.45 (8)C2—C7—H7119.9
C1—N1—H1N117.4 (10)N1—C8—C13122.01 (8)
C8—N1—H1N113.9 (10)N1—C8—C9120.93 (8)
O1—C1—N1123.75 (9)C13—C8—C9117.06 (8)
O1—C1—C2121.96 (8)C10—C9—C8121.79 (9)
N1—C1—C2114.29 (8)C10—C9—N2115.92 (8)
C3—C2—C7119.32 (9)C8—C9—N2122.29 (8)
C3—C2—C1117.20 (8)O2—N2—O3122.11 (9)
C7—C2—C1123.47 (8)O2—N2—C9118.49 (8)
C4—C3—C2120.34 (9)O3—N2—C9119.38 (8)
C4—C3—H3119.8C11—C10—C9119.87 (9)
C2—C3—H3119.8C11—C10—H10120.1
C3—C4—C5119.97 (9)C9—C10—H10120.1
C3—C4—H4120.0C10—C11—C12119.39 (9)
C5—C4—H4120.0C10—C11—H11120.3
C6—C5—C4120.13 (9)C12—C11—H11120.3
C6—C5—H5119.9C13—C12—C11121.05 (9)
C4—C5—H5119.9C13—C12—H12119.5
C5—C6—C7119.99 (9)C11—C12—H12119.5
C5—C6—H6120.0C12—C13—C8120.83 (9)
C7—C6—H6120.0C12—C13—H13119.6
C6—C7—C2120.23 (9)C8—C13—H13119.6
C6—C7—H7119.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.887 (16)1.927 (15)2.6361 (11)135.7 (13)
C10—H10···O2i0.952.573.2254 (12)126
C6—H6···O3ii0.952.653.5122 (12)151
C12—H12···O1iii0.952.483.3695 (12)157

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, −y−1, −z+1; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2824).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cronin, L., Adams, D. A., Nightingale, D. J. & Clark, J. H. (2000). Acta Cryst. C56, 244–245. [PubMed]
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120–o124. [PubMed]
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography