PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o2024–o2025.
Published online 2009 July 29. doi:  10.1107/S1600536809028736
PMCID: PMC2977093

3-[2-(3-Methyl-2-oxo-1,2-dihydro­quinoxalin-1-yl)eth­yl]oxazolidin-2-one

Abstract

The title heterocyclic compound, C14H15N3O3, is a new synthetic mol­ecule containing oxazolidine and quinoxaline rings. It is built up from two fused six-membered rings linked to a five-membered oxazolidin-2-one ring by a C2 chain. Both ring systems are essentially planar [maximum deviation = 0.894 (3) Å, r.m.s. deviation = 0.0043 Å]. The structure is held together by van der Waals forces [electrostatic interactions between dipoles, O(...)C = 3.002 (2) Å] between mol­ecules and by weak π–π stacking between symmetry-related mol­ecules, with an inter­planar distance of 3.579 Å and a centroid–centroid distance of 3.800 (1) Å. Inter­molecular C—H(...)O hydrogen bonds are also observed in the crystal structure.

Related literature

For the biological activity of 3–2(-(3-methyl-2-oxoquinoxalin-1(2H)-yl) eth­yl)oxazolidin-2-one, see: Ferfra (2001 [triangle]); Habib & El-hawash (1997 [triangle]); Romer et al. (1995 [triangle]). For pharmaceutical agrochemicals, see: Badran et al. (2003 [triangle]); Madhusudhan et al. (2004 [triangle]); Soad et al. (2006 [triangle]); Sriharsha & Shashikanth (2006 [triangle]); Sarro et al. (2002 [triangle]). For a related structure, see: Doubia et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2024-scheme1.jpg

Experimental

Crystal data

  • C14H15N3O3
  • M r = 273.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2024-efi1.jpg
  • a = 12.280 (3) Å
  • b = 10.736 (3) Å
  • c = 20.406 (4) Å
  • β = 102.32 (1)°
  • V = 2628.3 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.28 × 0.17 × 0.12 mm

Data collection

  • Bruker X8 APEXII CCD area-detector diffractometer
  • Absorption correction: none
  • 21237 measured reflections
  • 4108 independent reflections
  • 2727 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.157
  • S = 1.04
  • 4108 reflections
  • 204 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028736/fj2233sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028736/fj2233Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making possible the present work. They also thank Professors B. Jaber and M. Benaissa for useful discussions and H. Zouihri for his technical assistance during the X-ray measurements.

supplementary crystallographic information

Comment

The heterocyclic compounds to 5 or 6 Chains occupying a capital in fields as varied,quinoxalines pharmacy (Madhusudhan et al. 2004 and Sarro et al.2002) in agrochemicals (Romer et al. 1995, Habib et al. 1997) biology (Ferfra 2001)etc. The quinoxalines and the oxazolidines are subjets of numerous articles in describing the synthesis of new derivatives presentery antibacterial properties (Badran et al. 2003, Sriharsha et al. 2006) and anti tumor (Soad et al. 2006). We describe here the synthesis of compound 3 to side of the compound 2 per share on the dichlorodiéthylmine quinoxaline-2-one fusion as show in the chemical structural diagram (Fig.1).

The 3–2(-(3-methyl-2-oxoquinoxalin-1(2H)-yl)ethyl)oxazolidin-2-one (I) molecule structure is built up from two fused six-membered rings linked to a five-membered ring (oxazolidin-2-one) by an ethylic groupe. The both rings are essentially planar and forms a dihedral angle of 20.46 (6)° with the oxazolidin-2-one ring. The molecular structure of (I) is shown in Fig.2. The geometric parameters (bond lenghths and angles) are very similar to those observed in previously reported structures (Doubia et al. 2007).

An intermolecular C—H···O hydrogen bond is observed in the cristal structure as shown in the partial plot of the structure (Fig.3). Furthermore, the structure is stabilized by Van der Waals forces and together by weak slipped π-π stzcking between symmetry related molecules (C to C ring) with interplanar distance of 3.579 Å and centroid to centroid vector of 3.800 (1) Å.

Experimental

It reacted 0.0125 moles of quinoxaline-2-one with 2.66 moles of dichlorodiéthylamine in 40 ml dimethyl formamide in the presence of 2.87 moles of K2CO3 and a few milligrams of BTBA. The mixture was brought to reflux in a bath of sand magnetic stirring for 6 h. After vacuum concentration, the separation of compounds was done by column chromatography eluant 4 / 6(hexane - ethyl acetate). Recrystallization occurred in the same eluent. This compound was obtained in 60% and his melting point is 175°C.

Refinement

All H atoms were located in a difference map and refined without any distance restraints.

Figures

Fig. 1.
: Schematic of the chemical reaction leading to the title compound.
Fig. 2.
: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small small circles.
Fig. 3.
: Partial packing view showing the C—H···O interactions (dashed lines).

Crystal data

C14H15N3O3F(000) = 1152
Mr = 273.29Dx = 1.381 Mg m3
Monoclinic, C2/cMelting point: 448 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.280 (3) ÅCell parameters from 21279 reflections
b = 10.736 (3) Åθ = 2.6–30.9°
c = 20.406 (4) ŵ = 0.10 mm1
β = 102.32 (1)°T = 298 K
V = 2628.3 (11) Å3Prism, colourless
Z = 80.28 × 0.17 × 0.12 mm

Data collection

Bruker X8 APEXII CCD area-detector diffractometerRint = 0.033
graphiteθmax = 30.9°, θmin = 2.6°
[var phi] and ω scansh = −17→17
21237 measured reflectionsk = −15→15
4108 independent reflectionsl = −26→29
2727 reflections with I > 2σ(I)

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.081P)2 + 0.6684P] where P = (Fo2 + 2Fc2)/3
4108 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.11176 (11)0.25753 (10)0.54216 (6)0.0630 (3)
O2−0.13309 (10)0.52714 (11)0.26113 (5)0.0598 (3)
O3−0.13793 (10)0.32026 (12)0.24503 (6)0.0662 (4)
N10.11384 (8)0.15986 (10)0.44405 (5)0.0353 (2)
N20.16192 (10)−0.06171 (10)0.51654 (5)0.0422 (3)
N3−0.06491 (10)0.40729 (10)0.34753 (5)0.0411 (3)
C10.12314 (11)0.16145 (12)0.51219 (6)0.0387 (3)
C20.14895 (11)0.04062 (12)0.54680 (6)0.0385 (3)
C30.15128 (10)−0.05948 (12)0.44748 (6)0.0375 (3)
C40.16612 (13)−0.17122 (14)0.41519 (8)0.0499 (4)
H40.1830 (15)−0.2426 (16)0.4433 (9)0.064 (5)*
C50.15685 (13)−0.17446 (16)0.34713 (8)0.0550 (4)
H50.0990 (14)0.1222 (17)0.3136 (8)0.061 (5)*
C60.13209 (13)−0.06520 (17)0.31028 (8)0.0524 (4)
H60.1300 (16)−0.0693 (17)0.2637 (11)0.070 (6)*
C70.11673 (12)0.04585 (15)0.34045 (7)0.0452 (3)
H70.1688 (16)−0.2533 (17)0.3259 (9)0.064 (5)*
C80.12719 (10)0.05051 (11)0.40996 (6)0.0341 (3)
C90.15977 (14)0.04223 (15)0.62100 (7)0.0522 (4)
H9A0.1775−0.04000.63860.090*
H9B0.09070.06900.63130.080*
H9C0.21810.09870.64090.071 (6)*
C100.08780 (11)0.27856 (12)0.40844 (7)0.0414 (3)
H10A0.12300.28110.37020.053 (4)*
H10B0.11710.34690.43810.047 (4)*
C11−0.03761 (11)0.29325 (13)0.38470 (7)0.0457 (3)
H11A−0.06700.22310.35650.062 (5)*
H11B−0.07230.29340.42320.069 (5)*
C12−0.0550 (2)0.52845 (15)0.37655 (9)0.0767 (6)
H12A0.02210.54850.39620.090*
H12B−0.09900.53610.41060.088*
C13−0.10029 (16)0.61022 (15)0.31685 (9)0.0625 (5)
H13A−0.16370.65780.32420.081 (6)*
H13B−0.04350.66760.30880.089 (7)*
C14−0.11293 (11)0.40817 (14)0.28215 (7)0.0429 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0931 (9)0.0442 (6)0.0505 (6)0.0055 (6)0.0130 (6)−0.0100 (5)
O20.0708 (8)0.0578 (7)0.0454 (6)0.0030 (5)0.0000 (5)0.0146 (5)
O30.0708 (8)0.0718 (8)0.0502 (6)0.0112 (6)0.0005 (5)−0.0246 (6)
N10.0362 (5)0.0336 (5)0.0352 (5)0.0005 (4)0.0053 (4)0.0056 (4)
N20.0472 (6)0.0398 (6)0.0353 (6)−0.0030 (5)−0.0010 (4)0.0057 (4)
N30.0502 (7)0.0332 (5)0.0361 (6)0.0048 (4)0.0009 (5)0.0017 (4)
C10.0397 (6)0.0385 (6)0.0363 (6)−0.0027 (5)0.0048 (5)−0.0001 (5)
C20.0369 (6)0.0425 (7)0.0329 (6)−0.0078 (5)0.0005 (5)0.0033 (5)
C30.0360 (6)0.0370 (6)0.0368 (6)0.0008 (5)0.0016 (5)0.0028 (5)
C40.0525 (8)0.0400 (7)0.0528 (8)0.0061 (6)0.0013 (6)−0.0023 (6)
C50.0513 (9)0.0561 (9)0.0557 (9)0.0062 (7)0.0075 (7)−0.0160 (7)
C60.0475 (8)0.0734 (11)0.0373 (7)0.0010 (7)0.0110 (6)−0.0072 (7)
C70.0434 (7)0.0566 (8)0.0360 (7)0.0010 (6)0.0091 (5)0.0063 (6)
C80.0289 (6)0.0381 (6)0.0345 (6)0.0004 (4)0.0050 (4)0.0036 (5)
C90.0595 (9)0.0622 (9)0.0319 (6)−0.0168 (7)0.0030 (6)0.0035 (6)
C100.0425 (7)0.0341 (6)0.0463 (7)−0.0008 (5)0.0066 (5)0.0103 (5)
C110.0426 (7)0.0387 (7)0.0533 (8)0.0001 (5)0.0044 (6)0.0121 (6)
C120.1231 (18)0.0380 (8)0.0533 (10)0.0076 (9)−0.0162 (10)−0.0075 (7)
C130.0684 (11)0.0380 (8)0.0734 (11)0.0008 (7)−0.0019 (8)0.0086 (7)
C140.0399 (7)0.0513 (8)0.0368 (6)0.0074 (6)0.0067 (5)−0.0016 (6)

Geometric parameters (Å, °)

O1—C11.2223 (17)C5—H70.976 (19)
O2—C141.3532 (18)C6—C71.373 (2)
O2—C131.434 (2)C6—H60.95 (2)
O3—C141.2080 (18)C7—C81.3975 (18)
N1—C11.3708 (16)C7—H50.984 (18)
N1—C81.3921 (16)C9—H9A0.9600
N1—C101.4680 (16)C9—H9B0.9600
N2—C21.2868 (18)C9—H9C0.9600
N2—C31.3874 (17)C10—C111.5208 (19)
N3—C141.3387 (17)C10—H10A0.9700
N3—C121.4237 (19)C10—H10B0.9700
N3—C111.4415 (16)C11—H11A0.9700
C1—C21.4787 (18)C11—H11B0.9700
C2—C91.4915 (19)C12—C131.508 (2)
C3—C41.3991 (19)C12—H12A0.9700
C3—C81.4041 (17)C12—H12B0.9700
C4—C51.369 (2)C13—H13A0.9700
C4—H40.953 (17)C13—H13B0.9700
C5—C61.392 (2)
C14—O2—C13109.55 (11)C2—C9—H9B109.5
C1—N1—C8121.61 (10)H9A—C9—H9B109.5
C1—N1—C10116.97 (11)C2—C9—H9C109.5
C8—N1—C10121.42 (10)H9A—C9—H9C109.5
C2—N2—C3118.58 (11)H9B—C9—H9C109.5
C14—N3—C12112.86 (11)N1—C10—C11110.28 (10)
C14—N3—C11122.27 (11)N1—C10—H10A109.6
C12—N3—C11124.57 (12)C11—C10—H10A109.6
O1—C1—N1121.63 (12)N1—C10—H10B109.6
O1—C1—C2122.48 (12)C11—C10—H10B109.6
N1—C1—C2115.89 (11)H10A—C10—H10B108.1
N2—C2—C1123.75 (11)N3—C11—C10111.20 (11)
N2—C2—C9120.25 (12)N3—C11—H11A109.4
C1—C2—C9116.00 (12)C10—C11—H11A109.4
N2—C3—C4118.03 (12)N3—C11—H11B109.4
N2—C3—C8122.11 (12)C10—C11—H11B109.4
C4—C3—C8119.85 (12)H11A—C11—H11B108.0
C5—C4—C3120.55 (14)N3—C12—C13102.23 (13)
C5—C4—H4123.4 (11)N3—C12—H12A111.3
C3—C4—H4116.1 (11)C13—C12—H12A111.3
C4—C5—C6119.21 (14)N3—C12—H12B111.3
C4—C5—H7119.0 (11)C13—C12—H12B111.3
C6—C5—H7121.8 (11)H12A—C12—H12B109.2
C7—C6—C5121.64 (14)O2—C13—C12105.73 (13)
C7—C6—H6120.9 (11)O2—C13—H13A110.6
C5—C6—H6117.4 (11)C12—C13—H13A110.6
C6—C7—C8119.63 (14)O2—C13—H13B110.6
C6—C7—H5120.6 (10)C12—C13—H13B110.6
C8—C7—H5119.8 (10)H13A—C13—H13B108.7
N1—C8—C7122.83 (12)O3—C14—N3128.19 (14)
N1—C8—C3118.06 (11)O3—C14—O2122.27 (13)
C7—C8—C3119.10 (12)N3—C14—O2109.53 (12)
C2—C9—H9A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H5···O3i0.98 (2)2.54 (2)3.462 (2)157 (2)
C10—H10A···O3i0.972.433.348 (2)157

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2233).

References

  • Badran, M. M., Abouzid, K. A. M. & Hussein, M. H. M. (2003). Arch. Pharm. Res. Part II, 26, 107–113. [PubMed]
  • Bruker (2005). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Doubia, M. L., Bouhfid, R., Ahabchane, N. H., Essassi, E. M. & El Ammari, L. (2007). Acta Cryst. E63, o3305.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ferfra, S. (2001). Thèse de Doctorat d’État Université Mohammed V, Agdal, Faculté des Sciences Rabat, Morocco.
  • Habib, N. S. & El-hawash, S. A. (1997). Pharmazie, 52, 750–753.
  • Madhusudhan, G., Om Reddy, G., Ramanathan, J. & Dubey, P. K. (2004). Indian J. Chem. Sect. B, 43, 957–963.
  • Romer, D. R., Aldrich, B. L., Pews, R. G. & Walter, R. W. (1995). Pestic. Sci.43, 263–266.
  • Sarro, G. De., Ferreri, G., Gareri, P., Russo, E., Sarro, A. De., Gitto, R. & Chimiri, A. (2002). Pharmacol. Biochem. Behav.74, 595–602. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soad, A. M., El-Hawash, S. A., Abeer, E. & Wahab, A. (2006). Arch. Pharm. Res.339, 437–447. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sriharsha, S. N. & Shashikanth, S. J. (2006). Heterocycl. Commun.12, 213–218.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography