PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m854.
Published online 2009 July 1. doi:  10.1107/S1600536809024039
PMCID: PMC2977092

Tris(1H-imidazole-κN 3)(7-oxabicyclo­[2.2.1]heptane-2,3-dicarboxyl­ato-κ3 O 2,O 3,O 7)cobalt(II) 3.35-hydrate

Abstract

In the crystal structure of the title compound, [Co(C8H8O5)(C3H4N2)3]·3.35H2O, the central CoII ion is in a slightly distorted octa­hedral environment, coordinated by the bridg­ing O atom from the bicyclo­[2.2.1]heptane ligand, by two carboxyl­ate O atoms from two different carboxyl­ate groups and by three N atoms from imidazole ligands. Uncoordinated water mol­ecules, some of them disordered, are present in the crystal structure. In the crystal structure, mol­ecules are linked by O—H(...)O, N—H(...)O and O—H(...)N hydrogen-bonding inter­actions.

Related literature

For several cobalt complexes of norcantharidin, see: Wang et al. (1988 [triangle]) and of imidazole, see: Furenlid et al. (1986 [triangle]); Zhu et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m854-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H8O5)(C3H4N2)3]·3.35H2O
  • M r = 507.67
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m854-efi1.jpg
  • a = 8.2666 (2) Å
  • b = 12.6522 (5) Å
  • c = 12.7200 (3) Å
  • α = 109.912 (2)°
  • β = 104.394 (1)°
  • γ = 95.354 (2)°
  • V = 1188.23 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.78 mm−1
  • T = 296 K
  • 0.41 × 0.36 × 0.29 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.735, T max = 0.798
  • 18153 measured reflections
  • 5402 independent reflections
  • 4712 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.241
  • S = 1.11
  • 5402 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 1.54 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024039/at2795sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024039/at2795Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

supplementary crystallographic information

Comment

7-Oxabicyclo(2,2,1) heptane-2,3-dicarboxylic anhydride (norcantharidin), a traditional Chinese drug, has a great inhibitive effect on common cancer cells. Imidazole is reputed as biocatalyst and biological ligand. Several cobalt complexes of norcantharidin (Wang et al., 1988) and of imidazole (Furenlid et al., 1986; Zhu et al., 2003) have been reported. However, there are no ternary complexes reported about them. So a novel cobalt(II) ternary complex of norcantharidin with imidazole has been synthesized and its single crystals were obtained.

In the title complex, each CoII ion is six-coordinated by one bridge oxygen, two carboxylate oxygen atoms in two different carboxylate groups and three nitrogen atom from imidazoles. O1, O5, N3 and N2 lie in the equatorial plane with the torsion angle 0.06 °. O2 and the nitrogen atom N1 from imidazole are in the axial positions. The bond angle of O2—Co1—N1 is 172.12 (13)°, so it forms a distorted octahedral. Owing to the binding of the bridge oxygen atom with Co, two six-membered rings (Co1/O5/C5/C6/C8/O2 and Co1/O5/C2/C1/C7/O1) are created. In addition, a seven-membered ring (Co1/O2/C8/C6/C1/C7/O1) is formed because of the coordination of carboxylate oxygen atoms O1 and O2, which makes the compound more stable.

In the crystal structure, there are O—H···O and N—H···O and O—H···N hydrogen bonds interactions (Table 1).

Experimental

A mixture of 0.5 mmol norcantharidin, 0.5 mmol CoCl26H2O, 2.5 mmol imidazole and 15 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. The solution was filtered and after two weeks block orange single crystals were obtained.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 (2) Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

Crystal data

[Co(C8H8O5)(C3H4N2)3]·3.35H2OZ = 2
Mr = 507.67F(000) = 529
Triclinic, P1Dx = 1.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2666 (2) ÅCell parameters from 8576 reflections
b = 12.6522 (5) Åθ = 1.8–27.7°
c = 12.7200 (3) ŵ = 0.78 mm1
α = 109.912 (2)°T = 296 K
β = 104.394 (1)°Block, orange
γ = 95.354 (2)°0.41 × 0.36 × 0.29 mm
V = 1188.23 (6) Å3

Data collection

Bruker APEXII area-detector diffractometer5402 independent reflections
Radiation source: fine-focus sealed tube4712 reflections with I > 2σ(I)
graphiteRint = 0.024
ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.735, Tmax = 0.798k = −15→16
18153 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.241H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.1424P)2 + 2.537P] where P = (Fo2 + 2Fc2)/3
5402 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.54 e Å3
0 restraintsΔρmin = −0.74 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.63081 (6)0.68205 (4)0.83619 (4)0.0284 (2)
N10.7319 (4)0.7409 (3)1.0204 (3)0.0341 (7)
N20.6963 (5)0.5190 (3)0.8077 (3)0.0346 (7)
N30.3830 (4)0.6199 (3)0.8333 (3)0.0349 (7)
N40.9131 (7)0.8220 (5)1.2013 (5)0.0693 (14)
H4C1.00390.85641.25900.083*
N50.6939 (6)0.3370 (3)0.7193 (5)0.0574 (12)
H5B0.67930.27150.66380.069*
N60.1391 (6)0.5038 (5)0.7969 (5)0.0643 (13)
H6B0.06430.44370.77980.077*
O10.8683 (4)0.7508 (3)0.8304 (3)0.0391 (7)
O1W0.7281 (7)0.8341 (4)0.4258 (4)0.0742 (13)
H1WA0.73020.90310.46780.089*
H1WB0.63850.79250.42220.089*
O2W0.3268 (4)0.9162 (3)0.4450 (2)0.0376 (7)
H2WA0.29660.84980.44430.045*
H2WB0.40620.91470.41320.045*
O20.5497 (5)0.6445 (3)0.6545 (3)0.0451 (8)
O31.0444 (5)0.8533 (4)0.7804 (5)0.0725 (14)
O3W1.091 (2)0.5698 (11)0.5348 (6)0.191 (9)0.62
H3WA1.15540.52130.53520.229*0.62
H3WB1.14230.62540.52510.229*0.62
O3W'0.9060 (13)0.5536 (8)0.5087 (6)0.044 (2)0.38
H4WA0.83770.59950.51960.052*0.38
H4WB0.86260.49130.51140.052*0.38
O4W1.0657 (12)0.8869 (16)0.5732 (9)0.091 (6)0.35
H5WA1.07320.92080.64500.110*0.35
H5WB1.05880.81560.55900.110*0.35
O40.6568 (6)0.6890 (3)0.5285 (3)0.0546 (9)
O50.5636 (4)0.8523 (2)0.8560 (2)0.0317 (6)
C10.7756 (5)0.9070 (3)0.7836 (4)0.0356 (8)
H1A0.82650.97440.77300.043*
C20.7068 (5)0.9451 (3)0.8892 (4)0.0362 (9)
H2A0.79140.95840.96400.043*
C30.6172 (7)1.0455 (4)0.8901 (5)0.0495 (12)
H3A0.68531.10390.87720.059*
H3B0.59161.07980.96340.059*
C40.4520 (7)0.9865 (4)0.7860 (5)0.0472 (11)
H4A0.35100.99530.81140.057*
H4B0.44641.01630.72460.057*
C50.4739 (5)0.8612 (3)0.7458 (4)0.0343 (8)
H5A0.36610.80600.70380.041*
C60.6067 (5)0.8427 (3)0.6801 (4)0.0342 (8)
H6A0.58870.88100.62410.041*
C70.9075 (5)0.8317 (4)0.7984 (4)0.0385 (9)
C80.6040 (6)0.7161 (4)0.6169 (4)0.0371 (9)
C90.3052 (6)0.5083 (4)0.8036 (5)0.0453 (11)
H9A0.35890.44570.79010.054*
C100.1132 (5)0.6143 (4)0.8230 (4)0.0339 (8)
H10A0.01100.63850.82610.041*
C110.2615 (5)0.6804 (4)0.8431 (4)0.0380 (9)
H11A0.27760.75910.86170.046*
C120.6597 (6)0.4343 (4)0.7060 (5)0.0455 (10)
H12A0.61590.44060.63410.055*
C130.7553 (8)0.3606 (5)0.8352 (6)0.0592 (15)
H13A0.79000.30960.87030.071*
C140.7564 (7)0.4729 (4)0.8902 (5)0.0479 (11)
H14A0.79210.51280.97090.057*
C150.8950 (6)0.7955 (5)1.0852 (4)0.0519 (12)
H15A0.98100.81221.05480.062*
C160.7597 (6)0.7835 (4)1.2069 (3)0.0349 (8)
H16A0.73210.78901.27490.042*
C170.6539 (6)0.7360 (4)1.0978 (4)0.0404 (9)
H17A0.53970.70351.07870.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0262 (3)0.0286 (3)0.0308 (3)0.0069 (2)0.0089 (2)0.0113 (2)
N10.0325 (17)0.0372 (17)0.0323 (17)0.0075 (14)0.0079 (14)0.0141 (14)
N20.0330 (17)0.0310 (16)0.0418 (18)0.0094 (13)0.0126 (14)0.0142 (14)
N30.0270 (16)0.0350 (17)0.0418 (18)0.0065 (13)0.0086 (14)0.0148 (15)
N40.070 (3)0.075 (3)0.048 (3)0.001 (3)0.001 (2)0.019 (2)
N50.059 (3)0.0284 (19)0.078 (3)0.0115 (18)0.023 (2)0.009 (2)
N60.046 (2)0.061 (3)0.086 (4)0.000 (2)0.021 (2)0.030 (3)
O10.0350 (15)0.0425 (16)0.0522 (18)0.0137 (13)0.0216 (14)0.0251 (14)
O1W0.099 (4)0.078 (3)0.060 (3)0.020 (3)0.043 (3)0.029 (2)
O2W0.0422 (16)0.0350 (14)0.0265 (13)0.0221 (13)0.0029 (12)0.0021 (11)
O20.066 (2)0.0317 (15)0.0354 (16)0.0101 (14)0.0132 (15)0.0111 (12)
O30.040 (2)0.081 (3)0.134 (4)0.0207 (19)0.043 (2)0.071 (3)
O3W0.271 (17)0.180 (11)0.027 (3)−0.178 (12)−0.009 (6)0.020 (5)
O3W'0.069 (6)0.063 (5)0.022 (3)0.060 (5)0.029 (4)0.021 (3)
O4W0.027 (5)0.205 (17)0.031 (5)−0.031 (7)−0.004 (4)0.054 (8)
O40.080 (3)0.050 (2)0.0413 (18)0.0216 (18)0.0306 (18)0.0152 (15)
O50.0320 (14)0.0287 (13)0.0330 (14)0.0067 (11)0.0086 (11)0.0103 (11)
C10.037 (2)0.0283 (18)0.044 (2)0.0063 (15)0.0145 (17)0.0140 (16)
C20.035 (2)0.0288 (18)0.038 (2)0.0029 (15)0.0080 (17)0.0069 (16)
C30.057 (3)0.027 (2)0.059 (3)0.0092 (19)0.019 (2)0.0073 (19)
C40.052 (3)0.040 (2)0.055 (3)0.024 (2)0.018 (2)0.019 (2)
C50.034 (2)0.0325 (19)0.035 (2)0.0105 (15)0.0073 (16)0.0122 (16)
C60.041 (2)0.0323 (19)0.0319 (19)0.0131 (16)0.0100 (16)0.0139 (16)
C70.032 (2)0.038 (2)0.046 (2)0.0063 (16)0.0137 (18)0.0167 (18)
C80.044 (2)0.037 (2)0.0276 (18)0.0141 (17)0.0061 (16)0.0104 (16)
C90.038 (2)0.038 (2)0.067 (3)0.0092 (18)0.022 (2)0.024 (2)
C100.0213 (16)0.040 (2)0.040 (2)0.0085 (15)0.0111 (15)0.0134 (17)
C110.033 (2)0.039 (2)0.041 (2)0.0093 (17)0.0128 (17)0.0109 (17)
C120.046 (3)0.037 (2)0.049 (3)0.0099 (19)0.014 (2)0.0108 (19)
C130.069 (4)0.046 (3)0.086 (4)0.026 (3)0.036 (3)0.041 (3)
C140.054 (3)0.049 (3)0.055 (3)0.022 (2)0.022 (2)0.030 (2)
C150.036 (2)0.071 (3)0.041 (2)−0.004 (2)0.0040 (19)0.021 (2)
C160.047 (2)0.035 (2)0.0255 (17)0.0134 (17)0.0125 (16)0.0135 (15)
C170.043 (2)0.041 (2)0.041 (2)0.0109 (18)0.0162 (19)0.0179 (19)

Geometric parameters (Å, °)

Co1—O12.101 (3)O4W—H5WB0.8502
Co1—O22.107 (3)O4—C81.258 (5)
Co1—N32.112 (3)O5—C21.453 (5)
Co1—N12.113 (3)O5—C51.461 (5)
Co1—N22.116 (3)C1—C71.531 (6)
Co1—O52.222 (3)C1—C21.534 (6)
N1—C171.319 (6)C1—C61.578 (6)
N1—C151.364 (6)C1—H1A0.9800
N2—C121.310 (6)C2—C31.528 (6)
N2—C141.378 (6)C2—H2A0.9800
N3—C111.323 (5)C3—C41.553 (8)
N3—C91.377 (6)C3—H3A0.9700
N4—C161.343 (7)C3—H3B0.9700
N4—C151.363 (7)C4—C51.534 (6)
N4—H4C0.8600C4—H4A0.9700
N5—C121.344 (7)C4—H4B0.9700
N5—C131.350 (8)C5—C61.526 (6)
N5—H5B0.8600C5—H5A0.9800
N6—C91.349 (7)C6—C81.523 (6)
N6—C101.374 (7)C6—H6A0.9800
N6—H6B0.8600C9—H9A0.9300
O1—C71.268 (5)C10—C111.333 (6)
O1W—H1WA0.8501C10—H10A0.9300
O1W—H1WB0.8499C11—H11A0.9300
O2W—H2WA0.8500C12—H12A0.9300
O2W—H2WB0.8503C13—C141.351 (7)
O2—C81.257 (6)C13—H13A0.9300
O3—C71.234 (6)C14—H14A0.9300
O3W—H3WA0.8500C15—H15A0.9300
O3W—H3WB0.8498C16—C171.336 (6)
O3W'—H4WA0.8499C16—H16A0.9300
O3W'—H4WB0.8502C17—H17A0.9300
O4W—H5WA0.8500
O1—Co1—O285.20 (14)C2—C3—H3A111.4
O1—Co1—N3175.35 (12)C4—C3—H3A111.4
O2—Co1—N391.49 (15)C2—C3—H3B111.4
O1—Co1—N188.60 (14)C4—C3—H3B111.4
O2—Co1—N1172.12 (13)H3A—C3—H3B109.2
N3—Co1—N194.41 (14)C5—C4—C3101.3 (4)
O1—Co1—N291.64 (13)C5—C4—H4A111.5
O2—Co1—N291.04 (13)C3—C4—H4A111.5
N3—Co1—N291.68 (14)C5—C4—H4B111.5
N1—Co1—N293.99 (14)C3—C4—H4B111.5
O1—Co1—O586.79 (11)H4A—C4—H4B109.3
O2—Co1—O585.90 (11)O5—C5—C6101.7 (3)
N3—Co1—O589.72 (12)O5—C5—C4102.2 (3)
N1—Co1—O588.91 (12)C6—C5—C4111.2 (4)
N2—Co1—O5176.67 (12)O5—C5—H5A113.5
C17—N1—C15104.9 (4)C6—C5—H5A113.5
C17—N1—Co1128.7 (3)C4—C5—H5A113.5
C15—N1—Co1126.4 (3)C8—C6—C5112.3 (4)
C12—N2—C14105.6 (4)C8—C6—C1113.4 (3)
C12—N2—Co1125.7 (3)C5—C6—C1101.0 (3)
C14—N2—Co1127.8 (3)C8—C6—H6A110.0
C11—N3—C9105.4 (4)C5—C6—H6A110.0
C11—N3—Co1125.4 (3)C1—C6—H6A110.0
C9—N3—Co1128.4 (3)O3—C7—O1124.0 (4)
C16—N4—C15105.8 (5)O3—C7—C1119.2 (4)
C16—N4—H4C127.1O1—C7—C1116.9 (4)
C15—N4—H4C127.1O2—C8—O4123.3 (4)
C12—N5—C13107.7 (4)O2—C8—C6119.2 (4)
C12—N5—H5B126.2O4—C8—C6117.4 (4)
C13—N5—H5B126.2N6—C9—N3109.5 (4)
C9—N6—C10106.3 (4)N6—C9—H9A125.2
C9—N6—H6B126.9N3—C9—H9A125.2
C10—N6—H6B126.9C11—C10—N6107.3 (4)
C7—O1—Co1129.5 (3)C11—C10—H10A126.3
H1WA—O1W—H1WB108.4N6—C10—H10A126.3
H2WA—O2W—H2WB108.8N3—C11—C10111.4 (4)
C8—O2—Co1118.5 (3)N3—C11—H11A124.3
H3WA—O3W—H3WB108.3C10—C11—H11A124.3
H4WA—O3W'—H4WB108.1N2—C12—N5111.1 (5)
H5WA—O4W—H5WB108.2N2—C12—H12A124.5
C2—O5—C596.4 (3)N5—C12—H12A124.5
C2—O5—Co1115.2 (2)N5—C13—C14106.5 (5)
C5—O5—Co1114.1 (2)N5—C13—H13A126.8
C7—C1—C2111.4 (4)C14—C13—H13A126.8
C7—C1—C6114.2 (3)C13—C14—N2109.2 (5)
C2—C1—C6101.4 (3)C13—C14—H14A125.4
C7—C1—H1A109.9N2—C14—H14A125.4
C2—C1—H1A109.9N4—C15—N1109.9 (5)
C6—C1—H1A109.9N4—C15—H15A125.1
O5—C2—C3101.6 (3)N1—C15—H15A125.1
O5—C2—C1102.2 (3)C17—C16—N4108.0 (4)
C3—C2—C1110.4 (4)C17—C16—H16A126.0
O5—C2—H2A113.8N4—C16—H16A126.0
C3—C2—H2A113.8N1—C17—C16111.4 (4)
C1—C2—H2A113.8N1—C17—H17A124.3
C2—C3—C4102.0 (3)C16—C17—H17A124.3
O1—Co1—N1—C17176.2 (4)C1—C2—C3—C471.7 (5)
N3—Co1—N1—C17−0.2 (4)C2—C3—C4—C51.5 (5)
N2—Co1—N1—C17−92.2 (4)C2—O5—C5—C658.6 (3)
O5—Co1—N1—C1789.4 (4)Co1—O5—C5—C6−62.7 (3)
O1—Co1—N1—C15−2.2 (4)C2—O5—C5—C4−56.5 (4)
N3—Co1—N1—C15−178.6 (4)Co1—O5—C5—C4−177.8 (3)
N2—Co1—N1—C1589.4 (4)C3—C4—C5—O533.4 (5)
O5—Co1—N1—C15−89.0 (4)C3—C4—C5—C6−74.5 (5)
O1—Co1—N2—C12−94.7 (4)O5—C5—C6—C884.1 (4)
O2—Co1—N2—C12−9.4 (4)C4—C5—C6—C8−167.7 (4)
N3—Co1—N2—C1282.1 (4)O5—C5—C6—C1−37.0 (4)
N1—Co1—N2—C12176.6 (4)C4—C5—C6—C171.2 (4)
O1—Co1—N2—C1498.0 (4)C7—C1—C6—C82.1 (5)
O2—Co1—N2—C14−176.7 (4)C2—C1—C6—C8−117.8 (4)
N3—Co1—N2—C14−85.2 (4)C7—C1—C6—C5122.4 (4)
N1—Co1—N2—C149.3 (4)C2—C1—C6—C52.4 (4)
O2—Co1—N3—C11−86.7 (4)Co1—O1—C7—O3−167.8 (4)
N1—Co1—N3—C1188.1 (4)Co1—O1—C7—C113.2 (6)
N2—Co1—N3—C11−177.7 (4)C2—C1—C7—O3−131.4 (5)
O5—Co1—N3—C11−0.8 (4)C6—C1—C7—O3114.4 (5)
O2—Co1—N3—C982.4 (4)C2—C1—C7—O147.7 (5)
N1—Co1—N3—C9−102.9 (4)C6—C1—C7—O1−66.4 (5)
N2—Co1—N3—C9−8.7 (4)Co1—O2—C8—O4135.3 (4)
O5—Co1—N3—C9168.3 (4)Co1—O2—C8—C6−44.8 (5)
O2—Co1—O1—C759.9 (4)C5—C6—C8—O2−25.7 (5)
N1—Co1—O1—C7−115.3 (4)C1—C6—C8—O288.0 (5)
N2—Co1—O1—C7150.8 (4)C5—C6—C8—O4154.1 (4)
O5—Co1—O1—C7−26.3 (4)C1—C6—C8—O4−92.2 (5)
O1—Co1—O2—C8−38.7 (3)C10—N6—C9—N30.0 (6)
N3—Co1—O2—C8138.0 (4)C11—N3—C9—N6−0.5 (6)
N2—Co1—O2—C8−130.3 (3)Co1—N3—C9—N6−171.2 (4)
O5—Co1—O2—C848.4 (3)C9—N6—C10—C110.5 (6)
O1—Co1—O5—C2−16.1 (3)C9—N3—C11—C100.8 (5)
O2—Co1—O5—C2−101.6 (3)Co1—N3—C11—C10171.9 (3)
N3—Co1—O5—C2166.9 (3)N6—C10—C11—N3−0.9 (6)
N1—Co1—O5—C272.5 (3)C14—N2—C12—N5−0.2 (6)
O1—Co1—O5—C594.0 (3)Co1—N2—C12—N5−169.8 (3)
O2—Co1—O5—C58.6 (3)C13—N5—C12—N20.0 (6)
N3—Co1—O5—C5−82.9 (3)C12—N5—C13—C140.2 (6)
N1—Co1—O5—C5−177.3 (3)N5—C13—C14—N2−0.3 (6)
C5—O5—C2—C357.3 (4)C12—N2—C14—C130.4 (6)
Co1—O5—C2—C3177.8 (3)Co1—N2—C14—C13169.7 (4)
C5—O5—C2—C1−56.8 (3)C16—N4—C15—N1−0.2 (7)
Co1—O5—C2—C163.7 (3)C17—N1—C15—N40.4 (6)
C7—C1—C2—O5−88.8 (4)Co1—N1—C15—N4179.2 (4)
C6—C1—C2—O533.1 (4)C15—N4—C16—C17−0.2 (6)
C7—C1—C2—C3163.7 (4)C15—N1—C17—C16−0.6 (5)
C6—C1—C2—C3−74.4 (4)Co1—N1—C17—C16−179.2 (3)
O5—C2—C3—C4−36.2 (5)N4—C16—C17—N10.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wi0.852.333.161 (6)167
O2W—H2WA···N5ii0.852.593.133 (5)123
O2W—H2WB···O2Wi0.852.693.084 (7)110
O1W—H1WB···O40.852.172.690 (6)119
N5—H5B···O2Wii0.862.293.133 (5)165

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2795).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Furenlid, L. R., Van Derveer, D. G. & Felton, R. H. (1986). Acta Cryst. C42, 806–809.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.
  • Zhu, H.-L., Yang, S., Qiu, X.-Y., Xiong, Z.-D., You, Z.-L. & Wang, D.-Q. (2003). Acta Cryst. E59, m1089–m1090.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography