PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1839–o1840.
Published online 2009 July 11. doi:  10.1107/S1600536809026427
PMCID: PMC2977085

3-Carboxy­anilinium hemioxalate

Abstract

In the title compound, C7H8NO2 +·0.5C2O4 2−, the asymmetric unit consists of an 3-carboxy­anilinium cation, and one-half of an oxalate anion, which lies on a twofold rotation axis. The crystal packing is consolidated by inter­molecular N—H(...)O and O—H(...)O hydrogen bonds. The structure is built from infinite chains of cations and oxalate anions extending parallel to the b and c axes. The crystal studied was a non-merohedral twin. The ratio of the twin components refined to 0.335 (3):0.665 (3).

Related literature

Packing motifs, common patterns and hydrogen-bond networks in pure amino acids and in their crystals with organic acids are inter­esting for crystal engineering and for understanding structure–property relationships, see: Vijayan (1998 [triangle]); Nangia & Desiraju (1998 [triangle]); Desiraju (1997 [triangle]). For the structures of amino acid–carboxylic acid complexes, see: Bendjeddou et al. (2003 [triangle]); Cherouana et al. (2002 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For graph-set motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1839-scheme1.jpg

Experimental

Crystal data

  • C7H8NO2 +·0.5C2O4 2−
  • M r = 182.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1839-efi6.jpg
  • a = 22.034 (3) Å
  • b = 10.779 (2) Å
  • c = 6.9927 (10) Å
  • β = 103.918 (4)°
  • V = 1612.0 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 298 K
  • 0.3 × 0.1 × 0.09 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 8434 measured reflections
  • 1836 independent reflections
  • 1305 reflections with > 2σ
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.127
  • S = 1.02
  • 1836 reflections
  • 119 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: KappaCCD Reference Manual (Nonius, 1998 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), PARST97 (Nardelli, 1995 [triangle]), Mercury (Macrae et al., 2006 [triangle]), POVRay (Persistence of Vision Team, 2004 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026427/bx2219sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026427/bx2219Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Jean-Claude Daran of L3C for helpful discussions.

supplementary crystallographic information

Comment

A comparative study of the packing motifs, common patterns and the hydrogen-bond networks in crystals of pure amino acids and in their crystals with organic acids is interesting for crystal engineering and for understanding structure-property relation ships (Vijayan (1998), Nangia & Desiraju (1998), Desiraju (1997)). Amino acids crystallize easily with organic acids in general and with oxalic acid in particular. These systems are interesting as molecular materials which exhibit nonlinear optical properties.

The present study, which reports the crystal structure of 3-carboxyanilinium acid with oxalic acid, (I), forms part of a series of X-ray investigations being carried out in our laboratory on amino acid-carboxylic acid complexes. The X-ray investigations on these complexes have revealed interesting and useful data regarding the ionization states of individual molecules, their stoichiometry and intermolecular aggregation patterns (Bendjeddou et al., 2003, Cherouana et al., 2002).

Fig. 1 shows the molecular structure of (I). The amino acid molecule exists in the cationic form with a positively charged amino group and uncharged carboxylic acid group. The oxalate anion is flat and completely deprotonated and lies across a crystallographic rotation axis 2. The bond lengths and angles are all normal for their types (Allen et al., 1987).

In the title compound the ions are connected via a three-dimensional N—H···O and O—H···O hydrogen bonds network (Table 1). Unexpectedly, there are no centrosymmetric hydrogen bonded dimers between the carboxylic acid groups of adjacent 3-carboxyanilinium cations which is a characteristic feature found in most salts of 3- and 4-aminobenzoic acid (Cambridge Structural Database, Version 5.29; Allen, 2002). All ammonium H atoms are involved in hydrogen bonds with two different anions and one cation. Two of these interactions link the anions and cations in an alternating fashion into extended rings along the [001] direction, which can be described by the graph-set motif R21(5) (Bernstein et al., 1995). The combination of each N—H1N···O1 and N—H3N···O1 hydrogen bonds, with the only O—H···O which is a finit chain with a D(4) motif, generates two centrosymmetric fused rings a long [001] direction which can be described by the graph-set motif R44 (22) (Fig.2). The third interaction link the cations with the carbonyl O atom into zigzag chains along the [010] direction, which can be described by the graph-set motif C(7) (Fig.3).

Experimental

Brown needle-shaped single crystals of (I) were grown from a saturated aqueous solution containing m-aminobenzoic and oxalic acid in a 2:1 stoichiometric ratio.

Refinement

All H atoms attached to C, N and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H = 0.89Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(O).

Owing to the initial poor refinement, the search for the possibility of a non-merohedral twinning was carried out using the TwinRotMat procedure within PLATON (Spek, 2009). The crystal appears to be twinned about (1 0 0) with the rotation matrix: 1 0 1.516 0 - 1 0 0 0 - 1 The ratio of the two twin components was refined to 0.335 (3):0.665 (3).

Figures

Fig. 1.
The cation and anion of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Atoms with sufix (i) are generated by crystallographic rotation axis 2.
Fig. 2.
A view of the two-dimensional hydrogen-bonded network parallel to the (010) plane of (I), showing the aggregation of two hydrogen-bonding motifs, R12(5) and R44(24). Hydrogen bonds are drawn as dotted lines. Atoms marked with (ii), (iii) and (iv) are ...
Fig. 3.
Projection down the a axis of the lattice of C7H8NO2+. 0.5 C2 O42-, showing the formation of C(7) chains along [010]. Atom marked with (v) is at symmetry positions (1/2 - x, 1/2 + y, 1.5 - z).

Crystal data

C7H8NO2+·0.5C2O42F(000) = 760
Mr = 182.15Dx = 1.501 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6947 reflections
a = 22.034 (3) Åθ = 1.0–27.5°
b = 10.779 (2) ŵ = 0.12 mm1
c = 6.9927 (10) ÅT = 298 K
β = 103.918 (4)°Prism, brown
V = 1612.0 (4) Å30.3 × 0.1 × 0.09 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer1305 reflections with > 2σ
Radiation source: fine-focus sealed tubeRint = 0.056
graphiteθmax = 27.5°, θmin = 5.1°
ω scansh = −28→27
8434 measured reflectionsk = −14→14
1836 independent reflectionsl = −8→9

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050w = 1/[σ2(Fo2) + (0.06P)2 + 0.8696P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.23 e Å3
1836 reflectionsΔρmin = −0.30 e Å3
119 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1C0.19114 (6)0.20422 (15)0.7825 (2)0.0416 (4)
H1C0.15430.19250.78220.062*
O2C0.18039 (7)0.02007 (15)0.6332 (3)0.0454 (4)
O10.47841 (6)0.34729 (17)0.4737 (2)0.0444 (5)
O20.41945 (6)0.32562 (19)0.1690 (2)0.0511 (5)
N10.40615 (7)0.35616 (16)0.7510 (2)0.0311 (4)
H1N0.44050.34690.84730.037*
H2N0.38190.41390.78510.037*
H3N0.41670.37930.64120.037*
C20.27904 (9)0.1208 (2)0.6919 (3)0.0298 (5)
C60.37088 (10)0.0240 (2)0.6326 (3)0.0419 (6)
H60.3912−0.04620.60220.050*
C70.30879 (10)0.0167 (2)0.6429 (3)0.0363 (5)
H70.2873−0.05800.61690.044*
C30.31077 (8)0.2324 (2)0.7322 (3)0.0286 (5)
H30.29110.30180.76860.034*
C40.37232 (8)0.2388 (2)0.7174 (3)0.0283 (5)
C80.47040 (9)0.3362 (2)0.2924 (3)0.0299 (5)
C50.40230 (10)0.1354 (2)0.6675 (3)0.0378 (5)
H50.44350.14100.65750.045*
C10.21199 (9)0.1102 (2)0.7004 (3)0.0321 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1C0.0238 (7)0.0494 (10)0.0560 (10)−0.0059 (6)0.0181 (7)−0.0094 (8)
O2C0.0338 (8)0.0464 (10)0.0578 (10)−0.0126 (7)0.0145 (8)−0.0077 (8)
O10.0245 (7)0.0812 (13)0.0303 (8)−0.0043 (7)0.0121 (6)−0.0032 (8)
O20.0201 (7)0.0984 (15)0.0351 (8)−0.0040 (8)0.0073 (6)−0.0016 (9)
N10.0200 (8)0.0438 (11)0.0302 (9)−0.0009 (7)0.0075 (7)0.0004 (8)
C20.0244 (10)0.0378 (12)0.0278 (10)−0.0007 (8)0.0072 (8)0.0020 (9)
C60.0366 (12)0.0437 (14)0.0483 (13)0.0077 (10)0.0159 (11)−0.0037 (11)
C70.0367 (11)0.0375 (13)0.0363 (11)−0.0045 (10)0.0119 (9)−0.0022 (10)
C30.0231 (9)0.0363 (12)0.0276 (10)0.0022 (8)0.0082 (8)0.0002 (9)
C40.0218 (10)0.0389 (12)0.0237 (9)−0.0017 (8)0.0045 (7)0.0014 (8)
C80.0208 (10)0.0406 (12)0.0298 (10)0.0004 (8)0.0091 (8)0.0002 (9)
C50.0234 (10)0.0525 (15)0.0393 (12)0.0020 (10)0.0113 (9)−0.0004 (11)
C10.0269 (10)0.0400 (13)0.0299 (10)−0.0040 (9)0.0076 (8)0.0058 (10)

Geometric parameters (Å, °)

O1C—C11.302 (3)C2—C11.497 (3)
O1C—H1C0.8200C6—C51.378 (3)
O2C—C11.222 (2)C6—C71.389 (3)
O1—C81.244 (3)C6—H60.9300
O2—C81.245 (2)C7—H70.9300
N1—C41.459 (3)C3—C41.386 (3)
N1—H1N0.8900C3—H30.9300
N1—H2N0.8900C4—C51.382 (3)
N1—H3N0.8900C8—C8i1.557 (4)
C2—C71.384 (3)C5—H50.9300
C2—C31.385 (3)
C1—O1C—H1C109.5C2—C3—C4118.88 (19)
C4—N1—H1N109.5C2—C3—H3120.6
C4—N1—H2N109.5C4—C3—H3120.6
H1N—N1—H2N109.5C5—C4—C3120.95 (19)
C4—N1—H3N109.5C5—C4—N1118.88 (17)
H1N—N1—H3N109.5C3—C4—N1120.16 (18)
H2N—N1—H3N109.5O1—C8—O2126.74 (19)
C7—C2—C3120.55 (18)O1—C8—C8i117.5 (2)
C7—C2—C1118.60 (19)O2—C8—C8i115.8 (2)
C3—C2—C1120.85 (18)C6—C5—C4119.77 (19)
C5—C6—C7120.0 (2)C6—C5—H5120.1
C5—C6—H6120.0C4—C5—H5120.1
C7—C6—H6120.0O2C—C1—O1C124.04 (19)
C2—C7—C6119.9 (2)O2C—C1—C2121.5 (2)
C2—C7—H7120.1O1C—C1—C2114.49 (17)
C6—C7—H7120.1
O1C—C1—C2—C3−12.3 (3)C2—C3—C4—C5−1.3 (3)
O1C—C1—C2—C7167.71 (18)N1—C4—C5—C6−179.12 (19)
O2C—C1—C2—C3167.2 (2)C3—C4—C5—C6−0.3 (3)
O2C—C1—C2—C7−12.9 (3)C4—C5—C6—C71.6 (3)
C1—C2—C3—C4−178.32 (19)C5—C6—C7—C2−1.2 (3)
C7—C2—C3—C41.7 (3)O1—C8—C8i—O1i−167.6 (2)
C1—C2—C7—C6179.58 (19)O1—C8—C8i—O2i12.1 (3)
C3—C2—C7—C6−0.4 (3)O2—C8—C8i—O1i12.1 (3)
C2—C3—C4—N1177.46 (19)O2—C8—C8i—O2i−168.3 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1C—H1C···O2ii0.821.752.560 (4)169
N1—H1N···O1iii0.891.922.798 (2)169
N1—H2N···O2Civ0.891.972.856 (2)171
N1—H3N···O10.892.032.791 (2)143

Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (iii) −x+1, y, −z+3/2; (iv) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2219).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2003). Acta Cryst. E59, o649–o651.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Cherouana, A., Benali-Cherif, N., Bendjeddou, L. & Merazig, H. (2002). Acta Cryst. E58, o1351–o1353.
  • Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475–1482.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nangia, A. & Desiraju, G. R. (1998). Acta Cryst. A54, 934–944.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Nonius (1998). KappaCCD Reference Manual Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Persistence of Vision Team (2004). POV-RAY Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vijayan, M. (1998). Prog. Biophys. Mol. Biol.52, 71–99. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography