PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3051.
Published online 2009 November 11. doi:  10.1107/S1600536809046728
PMCID: PMC2972184

2-Benzyl­oxybenzaldehyde azine

Abstract

The complete mol­ecule of the title compound, C28H24N2O2, is generated by a centre of inversion (at the mid-point of the N—N bond). The substituents at the ends of the C=N bonds adopt an E,E configuration. The central –CH=N—N=CH– fragment is planar, but as a whole the mol­ecule is not: the benz­yloxy group is rotated about the O—C bond by 69.3 (2)° with respect to the plane of the benzyl­idene hydrazine unit.

Related literature

For general background to the coordination capability and biological activity of Schiff bases, see: Amadei et al. (1998 [triangle]); Xu et al. (2007 [triangle]). For related structures, see: Glidewell et al. (2006 [triangle]); Chattopadhyay et al. (2008 [triangle]). For the synthesis, see: Fu (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3051-scheme1.jpg

Experimental

Crystal data

  • C28H24N2O2
  • M r = 420.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3051-efi1.jpg
  • a = 11.222 (2) Å
  • b = 8.1157 (15) Å
  • c = 12.799 (2) Å
  • β = 102.297 (3)°
  • V = 1138.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 294 K
  • 0.30 × 0.22 × 0.06 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 8428 measured reflections
  • 2125 independent reflections
  • 1143 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.119
  • S = 1.02
  • 2125 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809046728/rn2064sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046728/rn2064Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Education Department (No. 2009B150019).

supplementary crystallographic information

Comment

Schiff bases have received much attention during the past decades because of their strong coordination capability and diverse biological activities (Amadei et al., 1998; Xu et al., 2007). Among them, azines are obtained from the condensation of an aldehyde or ketone with hydrazine.

The title compound possesses a crystallographically imposed center of symmetry at the midpoint of the N—N bond (Fig.1). It adopts an E, E configuration, which is similar to those of the related compounds (Glidewell, et al., 2007; Chattopadhyay et al., 2008). The C7—N1 [1.266 (2) Å] and N1—N1A [1.414 (3) Å] distances indicate these correspond to double and single bonds, respectively. The central –CH=N—N=CH– fragment is planar, but as a whole the molecule is not planar. The benzyloxy group is rotated about the O—C bond by 69.3 (2)° with respect to the plane of the benzylidene hydrazine moiety.

Experimental

The title compound was prepared as described in literature (Fu, 2007) and recrystallized from ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids at the 30% probability level (suffix A denotes the symmetry code: -x + 2, -y, -z).

Crystal data

C28H24N2O2F(000) = 444
Mr = 420.49Dx = 1.226 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.222 (2) ÅCell parameters from 930 reflections
b = 8.1157 (15) Åθ = 2.7–20.6°
c = 12.799 (2) ŵ = 0.08 mm1
β = 102.297 (3)°T = 294 K
V = 1138.9 (4) Å3BLOCK, yellow
Z = 20.30 × 0.22 × 0.06 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer1143 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
graphiteθmax = 25.5°, θmin = 2.7°
[var phi] and ω scansh = −13→13
8428 measured reflectionsk = −9→9
2125 independent reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.043P)2 + 0.1257P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2125 reflectionsΔρmax = 0.12 e Å3
146 parametersΔρmin = −0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.76645 (18)0.1813 (2)−0.07028 (15)0.0456 (5)
C20.7692 (2)0.2275 (3)−0.17414 (17)0.0558 (6)
H20.83640.1990−0.20220.067*
C30.6754 (2)0.3140 (3)−0.23634 (18)0.0665 (7)
H30.67900.3436−0.30580.080*
C40.5764 (2)0.3566 (3)−0.1955 (2)0.0692 (7)
H40.51300.4163−0.23740.083*
C50.5694 (2)0.3123 (3)−0.09323 (19)0.0651 (7)
H50.50130.3405−0.06650.078*
C60.66432 (19)0.2253 (3)−0.03029 (17)0.0529 (6)
C70.86788 (18)0.0949 (2)−0.00285 (16)0.0475 (5)
H70.86840.08070.06930.057*
C80.5779 (2)0.2404 (4)0.1251 (2)0.0907 (9)
H8A0.49760.19850.09250.109*
H8B0.57620.35960.11940.109*
C90.6111 (2)0.1903 (3)0.2398 (2)0.0626 (7)
C100.7017 (2)0.2695 (3)0.3102 (3)0.0799 (8)
H100.74450.35510.28660.096*
C110.7299 (3)0.2228 (5)0.4164 (3)0.0935 (9)
H110.79070.27820.46430.112*
C120.6691 (4)0.0959 (5)0.4514 (2)0.0952 (10)
H120.68880.06400.52280.114*
C130.5805 (3)0.0169 (4)0.3821 (3)0.0938 (9)
H130.5391−0.06990.40590.113*
C140.5506 (2)0.0633 (3)0.2766 (2)0.0742 (8)
H140.48880.00810.22970.089*
N10.95554 (14)0.0385 (2)−0.04001 (12)0.0503 (5)
O10.66609 (13)0.17497 (19)0.07219 (12)0.0690 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0451 (12)0.0464 (13)0.0445 (12)0.0027 (10)0.0074 (10)0.0012 (10)
C20.0595 (14)0.0573 (14)0.0508 (14)0.0035 (12)0.0126 (12)0.0019 (11)
C30.0826 (18)0.0636 (16)0.0512 (14)0.0121 (14)0.0092 (14)0.0112 (12)
C40.0698 (17)0.0688 (17)0.0615 (16)0.0169 (13)−0.0027 (14)0.0088 (13)
C50.0565 (15)0.0718 (17)0.0654 (16)0.0181 (13)0.0095 (13)0.0077 (13)
C60.0550 (14)0.0542 (14)0.0496 (13)0.0073 (11)0.0113 (11)0.0055 (11)
C70.0486 (12)0.0534 (13)0.0411 (12)0.0016 (10)0.0104 (10)−0.0024 (10)
C80.0831 (18)0.124 (2)0.0752 (19)0.0530 (17)0.0391 (16)0.0188 (17)
C90.0586 (15)0.0706 (17)0.0656 (17)0.0217 (13)0.0291 (13)0.0060 (14)
C100.0663 (18)0.080 (2)0.100 (2)0.0011 (15)0.0325 (17)0.0067 (17)
C110.0693 (19)0.113 (3)0.092 (2)0.0163 (18)0.0034 (18)−0.022 (2)
C120.115 (3)0.107 (3)0.069 (2)0.046 (2)0.030 (2)0.0131 (19)
C130.123 (3)0.076 (2)0.096 (2)0.0074 (19)0.053 (2)0.0160 (18)
C140.0758 (18)0.0684 (18)0.083 (2)0.0021 (14)0.0279 (16)−0.0083 (15)
N10.0446 (10)0.0636 (12)0.0415 (10)0.0078 (9)0.0067 (8)−0.0011 (8)
O10.0666 (10)0.0865 (12)0.0603 (10)0.0333 (9)0.0278 (8)0.0168 (9)

Geometric parameters (Å, °)

C1—C21.388 (3)C8—C91.492 (3)
C1—C61.398 (3)C8—H8A0.9700
C1—C71.454 (3)C8—H8B0.9700
C2—C31.370 (3)C9—C101.368 (3)
C2—H20.9300C9—C141.372 (3)
C3—C41.370 (3)C10—C111.382 (4)
C3—H30.9300C10—H100.9300
C4—C51.376 (3)C11—C121.362 (4)
C4—H40.9300C11—H110.9300
C5—C61.384 (3)C12—C131.346 (4)
C5—H50.9300C12—H120.9300
C6—O11.370 (2)C13—C141.373 (4)
C7—N11.266 (2)C13—H130.9300
C7—H70.9300C14—H140.9300
C8—O11.417 (2)N1—N1i1.414 (3)
C2—C1—C6117.99 (19)O1—C8—H8B110.0
C2—C1—C7121.61 (19)C9—C8—H8B110.0
C6—C1—C7120.36 (18)H8A—C8—H8B108.4
C3—C2—C1121.6 (2)C10—C9—C14118.7 (2)
C3—C2—H2119.2C10—C9—C8121.0 (3)
C1—C2—H2119.2C14—C9—C8120.3 (3)
C4—C3—C2119.5 (2)C9—C10—C11120.1 (3)
C4—C3—H3120.2C9—C10—H10119.9
C2—C3—H3120.2C11—C10—H10119.9
C3—C4—C5120.8 (2)C12—C11—C10120.3 (3)
C3—C4—H4119.6C12—C11—H11119.8
C5—C4—H4119.6C10—C11—H11119.8
C4—C5—C6119.7 (2)C13—C12—C11119.7 (3)
C4—C5—H5120.2C13—C12—H12120.1
C6—C5—H5120.2C11—C12—H12120.1
O1—C6—C5124.2 (2)C12—C13—C14120.6 (3)
O1—C6—C1115.37 (18)C12—C13—H13119.7
C5—C6—C1120.4 (2)C14—C13—H13119.7
N1—C7—C1121.61 (18)C9—C14—C13120.6 (3)
N1—C7—H7119.2C9—C14—H14119.7
C1—C7—H7119.2C13—C14—H14119.7
O1—C8—C9108.35 (19)C7—N1—N1i111.88 (19)
O1—C8—H8A110.0C6—O1—C8118.49 (17)
C9—C8—H8A110.0
C6—C1—C2—C30.2 (3)O1—C8—C9—C14−102.1 (3)
C7—C1—C2—C3−177.7 (2)C14—C9—C10—C11−0.8 (4)
C1—C2—C3—C40.1 (3)C8—C9—C10—C11179.1 (2)
C2—C3—C4—C5−0.6 (4)C9—C10—C11—C121.1 (4)
C3—C4—C5—C60.8 (4)C10—C11—C12—C13−0.6 (4)
C4—C5—C6—O1−179.8 (2)C11—C12—C13—C14−0.1 (4)
C4—C5—C6—C1−0.5 (3)C10—C9—C14—C130.1 (3)
C2—C1—C6—O1179.35 (18)C8—C9—C14—C13−179.8 (2)
C7—C1—C6—O1−2.8 (3)C12—C13—C14—C90.4 (4)
C2—C1—C6—C50.0 (3)C1—C7—N1—N1i179.20 (19)
C7—C1—C6—C5177.9 (2)C5—C6—O1—C8−12.4 (3)
C2—C1—C7—N1−9.7 (3)C1—C6—O1—C8168.4 (2)
C6—C1—C7—N1172.5 (2)C9—C8—O1—C6−170.5 (2)
O1—C8—C9—C1078.1 (3)

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2064).

References

  • Amadei, E., Carcelli, M., Lanelli, S., Cozzini, P., Pelagatti, P. & Pelizzi, C. (1998). J. Chem. Soc. Dalton Trans. pp. 1025-1029.
  • Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chattopadhyay, B., Basu, S., Ghosh, S., Helliwell, M. & Mukherjee, M. (2008). Acta Cryst. E64, o866. [PMC free article] [PubMed]
  • Fu, Z.-W. (2007). Acta Cryst. E63, o2993.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. B62, 666–675. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, C., Mao, H. Y., Shen, X. Q., Zhang, H. Y., Liu, H. L., Wu, Q. A., Hou, H. W. & Zhu, Y. (2007). J. Coord. Chem. 60, 193–200.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography