PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3229.
Published online 2009 November 28. doi:  10.1107/S1600536809050247
PMCID: PMC2972182

N-(Phenyl­sulfon­yl)-l-asparagine

Abstract

In the title compound, C10H12N2O5S, one of the sulfonyl O atoms is hydrogen bonded to the amido N atom of an adjacent mol­ecule. There is also a weak hydrogen-bonding inter­action between the other sulfonyl O atom and the secondary amino N atom. In addition, the amido O atom is also hydrogen bonded to a carboxyl O atom. These hydrogen-bonding inter­actions give rise to a layer structure parallel to the bc plane.

Related literature

For related compounds, see: Koroniak et al. (2003 [triangle]); Arshad et al. (2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3229-scheme1.jpg

Experimental

Crystal data

  • C10H12N2O5S
  • M r = 272.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3229-efi1.jpg
  • a = 10.5479 (6) Å
  • b = 5.1587 (3) Å
  • c = 11.0157 (7) Å
  • β = 92.011 (3)°
  • V = 599.03 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.25 × 0.21 × 0.13 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.932, T max = 0.964
  • 6832 measured reflections
  • 2732 independent reflections
  • 2518 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.076
  • S = 1.06
  • 2732 reflections
  • 176 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1187 Friedel pairs
  • Flack parameter: −0.01 (6)

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050247/om2295sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050247/om2295Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Higher Education Commission of Pakistan, GC University, Lahore, and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Sulfonamides compounds have long been studied due to their biological activity. N-acylsufonamide derivatives of asparagine have synthesized and characterized (Koroniak et al., 2003). The title compound is also a sulfonamide derivative and synthesized in continuation of our studies for the synthesis of acyclic and cyclic sulfonamides (Arshad et al., 2008), (Arshad et al., 2009). In this sulfonamide derivative of L-asparagine (Fig. 1), the molecule is twisted due to the tetrahedral geometries at S1, C7 and C9. One of the sulfonyl oxygen O2 is hydrogen-bonded to the amido nitrogen atom N2 of an adjacent molecule. The amido oxygen O6 also forms hydrogen bond with the carboxylate oxygen O4 of an adjacent molecule. There is a weak hydrogen bonding interaction between the other sulfonyl oxygen O1 and the secondary amino nitrogen N1 (Fig. 2). No significant intramolecular hydrogen bonding interaction is found in the molecule.

Experimental

Asparagine (0.175 g, 1.32 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was adjusted at 8–9 using 1M, Na2CO3 solution. Benzenesulfonyl chloride (0.169 ml, 0.234 g, 1.32 mmol) was suspended to the above solution and stirred at room temperature until all the benzenesulfonyl chloride was consumed. The completion of the reaction was achieved when the suspension turned to a clear solution. Upon completion of the reaction, the pH was adjusted 1–2, using 1 N HCl solution. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in methanol to yield white crystals.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.93 to 0.97 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times U~eq~(C). The hydroxy H was refined with a restraint of 0.82 (1) Å. The Flack parameter refined to -0.01 (6); there were 1187 measured Friedel pairs.

Figures

Fig. 1.
The molecular structure of N-(benzenesulfonyl)-L-asparagine showing 70% probability displacement ellipsoids and the atom numbering scheme. Hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Crystal packing as viewed down the crystallographic b-axis showing the hydrogen bonding interactions. Symmetry code: ii = -x+1,y+1/2,-z.

Crystal data

C10H12N2O5SF(000) = 284
Mr = 272.28Dx = 1.510 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3825 reflections
a = 10.5479 (6) Åθ = 2.6–27.4°
b = 5.1587 (3) ŵ = 0.29 mm1
c = 11.0157 (7) ÅT = 296 K
β = 92.011 (3)°Block, colorless
V = 599.03 (6) Å30.25 × 0.21 × 0.13 mm
Z = 2

Data collection

Bruker APEXII diffractometer2732 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.932, Tmax = 0.964k = −6→6
6832 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076w = 1/[σ2(Fo2) + (0.0464P)2 + 0.0133P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2732 reflectionsΔρmax = 0.33 e Å3
176 parametersΔρmin = −0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1187 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.91282 (16)0.8736 (3)0.28950 (15)0.0323 (4)
C20.93349 (19)0.7209 (4)0.18909 (17)0.0411 (4)
H20.87950.58380.16880.049*
C31.03713 (19)0.7776 (5)0.11920 (19)0.0503 (5)
H31.05340.67660.05160.060*
C41.11535 (19)0.9813 (5)0.1493 (2)0.0499 (5)
H41.18371.01870.10120.060*
C51.09413 (19)1.1314 (5)0.2501 (2)0.0517 (5)
H51.14831.26830.27000.062*
C60.99250 (18)1.0783 (4)0.32109 (19)0.0439 (4)
H60.97751.17830.38930.053*
C70.59899 (15)0.9058 (3)0.19546 (14)0.0279 (3)
H70.61110.71830.18730.034*
C80.64948 (16)1.0412 (3)0.08415 (14)0.0311 (3)
C90.45593 (16)0.9649 (3)0.20037 (16)0.0333 (4)
H9A0.44441.13700.23360.040*
H9B0.41870.96300.11860.040*
C100.38860 (15)0.7715 (3)0.27662 (15)0.0315 (4)
H1A0.379 (3)1.000 (7)0.406 (3)0.073 (9)*
H2A0.312 (3)0.722 (7)0.433 (3)0.090 (10)*
N10.66143 (14)0.9939 (3)0.30846 (13)0.0300 (3)
H1B0.6757 (17)1.141 (5)0.3130 (17)0.027 (5)*
N20.3616 (2)0.8376 (5)0.38858 (16)0.0575 (5)
O10.73791 (14)0.5586 (3)0.36312 (13)0.0448 (3)
O20.79671 (14)0.9371 (3)0.49048 (11)0.0458 (3)
O30.70376 (15)1.2446 (3)0.08654 (13)0.0492 (4)
O40.61999 (16)0.9065 (3)−0.01409 (11)0.0485 (4)
H4A0.64030.9880−0.07430.073*
O60.35901 (14)0.5579 (3)0.23573 (12)0.0430 (3)
S10.77553 (4)0.82468 (8)0.37280 (3)0.03153 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0338 (7)0.0321 (10)0.0308 (8)0.0042 (6)−0.0010 (6)0.0009 (6)
C20.0425 (9)0.0410 (10)0.0399 (10)0.0005 (8)0.0027 (8)−0.0079 (8)
C30.0454 (10)0.0652 (15)0.0407 (10)0.0089 (10)0.0084 (8)−0.0096 (10)
C40.0310 (9)0.0658 (14)0.0532 (12)0.0041 (9)0.0049 (8)0.0057 (10)
C50.0355 (10)0.0530 (13)0.0662 (14)−0.0071 (9)−0.0025 (9)−0.0011 (11)
C60.0412 (9)0.0438 (11)0.0466 (11)−0.0015 (8)−0.0012 (8)−0.0101 (9)
C70.0340 (8)0.0237 (7)0.0263 (8)−0.0001 (6)0.0039 (6)0.0008 (6)
C80.0357 (8)0.0312 (9)0.0268 (8)−0.0011 (7)0.0059 (7)0.0014 (6)
C90.0340 (8)0.0315 (9)0.0346 (9)0.0006 (7)0.0041 (7)0.0053 (7)
C100.0326 (8)0.0314 (10)0.0306 (8)0.0005 (6)0.0049 (6)0.0018 (6)
N10.0365 (7)0.0248 (7)0.0287 (7)0.0013 (6)0.0026 (6)−0.0003 (6)
N20.0810 (13)0.0565 (11)0.0363 (9)−0.0212 (12)0.0216 (8)−0.0110 (10)
O10.0570 (8)0.0306 (7)0.0472 (8)0.0007 (6)0.0059 (6)0.0108 (6)
O20.0567 (8)0.0564 (8)0.0244 (6)0.0107 (7)0.0006 (6)−0.0009 (6)
O30.0665 (9)0.0457 (9)0.0357 (7)−0.0255 (7)0.0061 (6)0.0041 (6)
O40.0820 (10)0.0388 (7)0.0255 (6)−0.0119 (7)0.0105 (6)−0.0018 (5)
O60.0593 (8)0.0361 (7)0.0345 (6)−0.0074 (6)0.0152 (6)−0.0019 (5)
S10.0406 (2)0.0300 (2)0.02406 (18)0.00257 (18)0.00257 (14)0.00307 (17)

Geometric parameters (Å, °)

C1—C21.382 (3)C7—H70.9800
C1—C61.386 (3)C8—O31.195 (2)
C1—S11.7596 (18)C8—O41.314 (2)
C2—C31.390 (3)C9—C101.499 (2)
C2—H20.9300C9—H9A0.9700
C3—C41.370 (3)C9—H9B0.9700
C3—H30.9300C10—O61.226 (2)
C4—C51.378 (3)C10—N21.320 (2)
C4—H40.9300N1—S11.6289 (15)
C5—C61.377 (3)N1—H1B0.77 (2)
C5—H50.9300N2—H1A0.88 (4)
C6—H60.9300N2—H2A0.95 (3)
C7—N11.460 (2)O1—S11.4319 (14)
C7—C81.523 (2)O2—S11.4304 (14)
C7—C91.542 (2)O4—H4A0.8200
C2—C1—C6121.60 (18)O3—C8—C7124.44 (15)
C2—C1—S1119.45 (14)O4—C8—C7109.93 (14)
C6—C1—S1118.76 (14)C10—C9—C7111.80 (14)
C1—C2—C3118.21 (19)C10—C9—H9A109.3
C1—C2—H2120.9C7—C9—H9A109.3
C3—C2—H2120.9C10—C9—H9B109.3
C4—C3—C2120.39 (19)C7—C9—H9B109.3
C4—C3—H3119.8H9A—C9—H9B107.9
C2—C3—H3119.8O6—C10—N2120.99 (18)
C3—C4—C5120.86 (19)O6—C10—C9120.76 (16)
C3—C4—H4119.6N2—C10—C9118.24 (18)
C5—C4—H4119.6C7—N1—S1120.55 (12)
C6—C5—C4119.82 (19)C7—N1—H1B116.2 (14)
C6—C5—H5120.1S1—N1—H1B110.9 (14)
C4—C5—H5120.1C10—N2—H1A113.9 (19)
C5—C6—C1119.11 (18)C10—N2—H2A117.8 (19)
C5—C6—H6120.4H1A—N2—H2A127 (3)
C1—C6—H6120.4C8—O4—H4A109.5
N1—C7—C8112.54 (13)O2—S1—O1119.35 (9)
N1—C7—C9108.73 (13)O2—S1—N1105.46 (8)
C8—C7—C9107.92 (13)O1—S1—N1106.44 (8)
N1—C7—H7109.2O2—S1—C1108.01 (9)
C8—C7—H7109.2O1—S1—C1109.25 (8)
C9—C7—H7109.2N1—S1—C1107.77 (8)
O3—C8—O4125.58 (16)
C6—C1—C2—C3−0.1 (3)C7—C9—C10—O6−79.6 (2)
S1—C1—C2—C3174.80 (16)C7—C9—C10—N2100.7 (2)
C1—C2—C3—C4−0.6 (3)C8—C7—N1—S1−99.21 (15)
C2—C3—C4—C50.9 (3)C9—C7—N1—S1141.28 (13)
C3—C4—C5—C6−0.6 (3)C7—N1—S1—O2−168.94 (12)
C4—C5—C6—C1−0.1 (3)C7—N1—S1—O1−41.22 (15)
C2—C1—C6—C50.5 (3)C7—N1—S1—C175.87 (14)
S1—C1—C6—C5−174.49 (16)C2—C1—S1—O2160.50 (14)
N1—C7—C8—O3−21.2 (2)C6—C1—S1—O2−24.43 (17)
C9—C7—C8—O398.8 (2)C2—C1—S1—O129.25 (17)
N1—C7—C8—O4161.31 (14)C6—C1—S1—O1−155.68 (14)
C9—C7—C8—O4−78.71 (17)C2—C1—S1—N1−86.01 (16)
N1—C7—C9—C10−78.10 (18)C6—C1—S1—N189.06 (15)
C8—C7—C9—C10159.55 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.77 (2)2.31 (2)3.076 (2)168.6 (19)
N2—H2A···O2ii0.95 (3)2.06 (3)2.998 (3)172 (3)
O4—H4A···O6iii0.821.822.5804 (18)155

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y−1/2, −z+1; (iii) −x+1, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2295).

References

  • Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940. [PMC free article] [PubMed]
  • Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. [PMC free article] [PubMed]
  • Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  • Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Koroniak, L., Ciustea, M., Gutierrez, J. A. & Richards, N. G. J. (2003). Org. Lett. 5, 2033–2036. [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography