PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3175–o3176.
Published online 2009 November 21. doi:  10.1107/S1600536809049307
PMCID: PMC2972180

2-(m-Tolyl­imino­meth­yl)phenol

Abstract

The title compound, C14H13NO, is non-planar with a dihedral angle of 47.00 (6)° between the planes of the two aromatic rings. Intra­molecular hydrogen bonding is observed between the O—H group and the N atom, resulting in a phenol–imine tautomeric form.

Related literature

For related structures, see: Elmali et al. (1998 [triangle]); Cheng et al. (2005 [triangle]); Arod et al. (2005 [triangle]); Bingöl et al. (2007 [triangle]); Zhang et al. (2007 [triangle]). For macromolecules containing Schiff base–metal complexes see: Leung et al. (2007 [triangle]). For related structures with non-linear optical properties, magnetic, oxygen transport and catalytic properties: see Karakas et al. (2004 [triangle]); Miyasaka et al. (2003 [triangle]); Bailes et al. (1947 [triangle]); Zhang et al. (1994 [triangle]). For photo-physical properties such as thermochromism and photochromism, see: Gakias et al. (2005 [triangle]). For N-Salicylideneaniline, which displays reversible photoreactivity and crystallizes as both non-planar and planar polymorphs, see: Arod et al. (2005 [triangle], 2007 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-o3175-scheme1.jpg

Experimental

Crystal data

  • C14H13NO
  • M r = 211.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3175-efi1.jpg
  • a = 7.4946 (4) Å
  • b = 11.8669 (6) Å
  • c = 12.2970 (6) Å
  • V = 1093.67 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.35 × 0.22 × 0.08 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.972, T max = 0.994
  • 11186 measured reflections
  • 1532 independent reflections
  • 1210 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.099
  • S = 1.08
  • 1532 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049307/bg2304sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049307/bg2304Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the University of the Free State is gratefully acknowledged. Mr Leo Kirsten is thanked for the data collection. Gratitude is expressed to SASOL and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

supplementary crystallographic information

Comment

Schiff bases readily form stable complexes with many transition metals and therefore play an important role in the developement of coordination chemistry. The choice of the appropriate amine and various substituents on the aromatic ring of the carbonyl compound allows for great versatility and fine tuning of the steric and electronic properties. The ligands have interesting photo-physical properties as thermochromism and photochromism (Gakias et al., 2005), such as N-Salicylideneaniline which displays reversible photoreactivity and crystallizes as both non-planar and planar polymorphs (Arod et al., 2005 and 2007).

The title compound (Figure 1) is non-planar with a dihedral angle between aromatic rings of 47.00 (6)°, and a C1—N1—C21—C22 torsion angle of 42.7 (3)° . The C1—N1 bond distance (1.287 (3) Å) confirms to the value for a double bond. The molecule displays a trans configuration with respect to the C1—N1 double bond. The N1—C21 and C1—C11 bond distances are 1.426 (3) and 1.445 (3)Å respectively and all other bond distances are within normal range. The molecule adopts a phenol-imine tautomeric form, with strong intramolecular hydrogen bonding observed (O—H···N = 2.595 (2) Å).

Experimental

Salicylaldehyde (14.0 mmol, 1.71 g) was dissolved in 30 ml methanol. m-Toluidine (14.0 mmol, 1.50 g) dissolved in methanol (10 ml), was added dropwise to the reaction mixture. Anhydrous MgSO4 was added to the reaction. The mixture was heated to 80° and refluxed for 3 hr. The MgSO4 was filtered and the yellow product was collected. The solvent was removed under reduced pressure. The product was dissolved in acetone and crystals suitable for x-ray diffraction were obtained by slow evaporation of the solvent at 0°C. Yield 94.4%. 1H NMR [CDCl3, 300 MHz, δ(p.p.m.)] 8.6 (1H, s, HCN), 7.4–6.9 (8H, m, Ar), 2.4 (3H, s, CH3).

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, O—H: 0.84 Å and Uiso(H) = 1.2-1.5 Ueq(C). The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H13NOF(000) = 448
Mr = 211.25Dx = 1.283 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1942 reflections
a = 7.4946 (4) Åθ = 3.2–22.3°
b = 11.8669 (6) ŵ = 0.08 mm1
c = 12.2970 (6) ÅT = 100 K
V = 1093.67 (10) Å3Cuboid, red
Z = 40.35 × 0.22 × 0.08 mm

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer1532 independent reflections
Radiation source: sealed tube1210 reflections with I > 2σ(I)
graphiteRint = 0.055
Detector resolution: 512 pixels mm-1θmax = 28.0°, θmin = 2.4°
ω and [var phi] scansh = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2004)k = −15→12
Tmin = 0.972, Tmax = 0.994l = −13→16
11186 measured reflections

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0939P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.20 e Å3
1532 reflectionsΔρmin = −0.21 e Å3
146 parameters

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 1032 frames were collected with a frame width of 0.5° covering up to θ = 27.99° with 100.0% completeness accomplized.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4954 (3)0.32440 (17)0.70887 (17)0.0219 (5)
H10.45680.25140.68770.026*
C2310.5244 (3)0.15389 (17)0.30941 (18)0.0272 (5)
H2A0.5840.10370.36120.041*
H2B0.60730.17330.25070.041*
H2C0.41980.11580.27890.041*
C110.5390 (3)0.34554 (16)0.82153 (17)0.0209 (5)
C120.6066 (3)0.45064 (17)0.85663 (18)0.0223 (5)
C130.6401 (3)0.46927 (19)0.96612 (18)0.0257 (5)
H130.68820.53930.98930.031*
C140.6037 (3)0.38626 (18)1.0414 (2)0.0281 (5)
H140.62480.40041.11630.034*
C150.5364 (3)0.28196 (18)1.00924 (18)0.0290 (6)
H150.51140.22521.06160.035*
C160.5066 (3)0.26242 (17)0.90006 (17)0.0242 (5)
H160.46310.19090.87760.029*
C210.4611 (3)0.37863 (16)0.52673 (17)0.0207 (5)
C220.5118 (3)0.27911 (17)0.47524 (17)0.0214 (5)
H220.57790.2240.51420.026*
C230.4662 (3)0.25991 (17)0.36708 (18)0.0214 (5)
C240.3690 (3)0.34139 (17)0.31147 (18)0.0237 (5)
H240.33620.3290.23780.028*
C250.3195 (3)0.44076 (17)0.36278 (19)0.0258 (5)
H250.25250.49560.32410.031*
C260.3668 (3)0.46058 (17)0.46985 (18)0.0240 (5)
H260.33510.52950.50420.029*
N10.5078 (2)0.40260 (13)0.63674 (14)0.0213 (4)
O10.6371 (2)0.53517 (12)0.78487 (12)0.0274 (4)
H1A0.60180.51560.72280.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0191 (12)0.0190 (10)0.0276 (12)0.0004 (9)0.0021 (11)−0.0022 (9)
C2310.0276 (13)0.0287 (11)0.0253 (11)0.0035 (10)−0.0034 (11)−0.0028 (10)
C110.0200 (11)0.0176 (10)0.0251 (11)0.0030 (9)0.0013 (10)−0.0020 (9)
C120.0176 (11)0.0205 (11)0.0287 (13)0.0023 (9)0.0018 (10)−0.0013 (10)
C130.0202 (12)0.0232 (10)0.0338 (13)−0.0003 (10)−0.0021 (11)−0.0064 (10)
C140.0272 (13)0.0303 (12)0.0267 (12)0.0029 (11)−0.0032 (11)−0.0054 (10)
C150.0341 (14)0.0269 (12)0.0260 (12)0.0025 (11)0.0013 (11)0.0023 (10)
C160.0276 (13)0.0208 (10)0.0242 (12)0.0002 (10)0.0021 (10)−0.0015 (8)
C210.0174 (11)0.0218 (10)0.0227 (12)−0.0051 (9)0.0036 (10)0.0035 (9)
C220.0191 (11)0.0213 (10)0.0238 (12)0.0013 (9)0.0002 (10)0.0031 (9)
C230.0161 (11)0.0235 (10)0.0247 (11)−0.0032 (9)0.0010 (10)0.0018 (9)
C240.0182 (11)0.0325 (12)0.0203 (11)−0.0023 (10)0.0003 (10)0.0060 (10)
C250.0222 (12)0.0245 (12)0.0305 (13)0.0001 (9)0.0006 (11)0.0100 (10)
C260.0202 (12)0.0187 (10)0.0331 (13)0.0002 (10)0.0029 (11)0.0032 (10)
N10.0208 (10)0.0213 (9)0.0219 (9)0.0016 (8)0.0019 (9)0.0001 (7)
O10.0315 (9)0.0207 (7)0.0300 (8)−0.0036 (7)−0.0004 (8)−0.0007 (7)

Geometric parameters (Å, °)

C1—N11.287 (3)C15—C161.381 (3)
C1—C111.445 (3)C15—H150.95
C1—H10.95C16—H160.95
C231—C231.509 (3)C21—C261.391 (3)
C231—H2A0.98C21—C221.393 (3)
C231—H2B0.98C21—N11.426 (3)
C231—H2C0.98C22—C231.392 (3)
C11—C161.402 (3)C22—H220.95
C11—C121.414 (3)C23—C241.390 (3)
C12—O11.355 (2)C24—C251.388 (3)
C12—C131.387 (3)C24—H240.95
C13—C141.379 (3)C25—C261.384 (3)
C13—H130.95C25—H250.95
C14—C151.394 (3)C26—H260.95
C14—H140.95O1—H1A0.84
N1—C1—C11121.27 (18)C15—C16—C11121.6 (2)
N1—C1—H1119.4C15—C16—H16119.2
C11—C1—H1119.4C11—C16—H16119.2
C23—C231—H2A109.5C26—C21—C22120.19 (19)
C23—C231—H2B109.5C26—C21—N1117.55 (18)
H2A—C231—H2B109.5C22—C21—N1122.22 (18)
C23—C231—H2C109.5C23—C22—C21120.40 (19)
H2A—C231—H2C109.5C23—C22—H22119.8
H2B—C231—H2C109.5C21—C22—H22119.8
C16—C11—C12118.21 (19)C24—C23—C22119.0 (2)
C16—C11—C1119.93 (18)C24—C23—C231120.03 (19)
C12—C11—C1121.80 (18)C22—C23—C231121.0 (2)
O1—C12—C13118.91 (19)C25—C24—C23120.5 (2)
O1—C12—C11120.96 (19)C25—C24—H24119.8
C13—C12—C11120.1 (2)C23—C24—H24119.8
C14—C13—C12120.1 (2)C26—C25—C24120.6 (2)
C14—C13—H13119.9C26—C25—H25119.7
C12—C13—H13119.9C24—C25—H25119.7
C13—C14—C15121.0 (2)C25—C26—C21119.3 (2)
C13—C14—H14119.5C25—C26—H26120.3
C15—C14—H14119.5C21—C26—H26120.3
C16—C15—C14118.9 (2)C1—N1—C21119.49 (16)
C16—C15—H15120.5C12—O1—H1A109.5
C14—C15—H15120.5
N1—C1—C11—C16173.3 (2)C26—C21—C22—C23−1.1 (3)
N1—C1—C11—C12−3.6 (3)N1—C21—C22—C23−178.81 (19)
C16—C11—C12—O1−178.59 (19)C21—C22—C23—C24−0.2 (3)
C1—C11—C12—O1−1.6 (3)C21—C22—C23—C231178.35 (19)
C16—C11—C12—C130.4 (3)C22—C23—C24—C250.5 (3)
C1—C11—C12—C13177.4 (2)C231—C23—C24—C25−178.0 (2)
O1—C12—C13—C14177.47 (19)C23—C24—C25—C260.3 (3)
C11—C12—C13—C14−1.5 (3)C24—C25—C26—C21−1.5 (3)
C12—C13—C14—C151.3 (3)C22—C21—C26—C251.9 (3)
C13—C14—C15—C160.1 (4)N1—C21—C26—C25179.75 (19)
C14—C15—C16—C11−1.3 (4)C11—C1—N1—C21−179.12 (19)
C12—C11—C16—C151.0 (3)C26—C21—N1—C1139.4 (2)
C1—C11—C16—C15−176.0 (2)C22—C21—N1—C1−42.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.841.852.595 (2)147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2304).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Arod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317–o320. [PubMed]
  • Arod, F., Pattison, P., Schenk, K. J. & Chapuis, G. (2007). Cryst. Growth Des. 7, 1679–1685.
  • Bailes, R. H. & Calvin, M. (1947). J. Am. Chem. Soc. 69, 1886–1893.
  • Bingöl, Y., Erşah˙in, F., Ağar, E. & Isık, Ş. (2007). Acta Cryst. E63, o3539.
  • Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.
  • Elmali, A., Elerman, Y. & Zeyrek, C. T. (1998). J. Mol. Struct. 443, 123–130.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Gakias, S., Rix, C., Fowless, A., Wills–Johnson, G., Latham, K. & White, J. (2005). J. Mol. Struct. 737, 69–74.
  • Karakas, A., Elmali, A., Ünver, H. & Svoboda, I. (2004). J. Mol. Struct. 702, 103–110.
  • Leung, A. C. W. & MacLachlan, M. J. (2007). J. Inorg. Organomet. Polym. Mater. 17, 57–89.
  • Miyasaka, H., Ieda, H., Matsumoto, N., Sugiura, K. & Yamashita, M. (2003). Inorg. Chem. 42, 3509–3515. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, W., Lee, N. H. & Jacobsen, E. N. (1994). J. Am. Chem. Soc. 116, 425–426.
  • Zhang, X.-L. & Li, Z.-X. (2007). Acta Cryst. E63, o319–o320.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography