PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3204–o3205.
Published online 2009 November 25. doi:  10.1107/S1600536809049794
PMCID: PMC2972174

7-Chloro-4-[(E)-(3-chloro­benzyl­idene)hydrazinyl]-1λ4-quinolinium 3-chloro­benzoate

Abstract

The title salt, C16H12Cl2N3 +·C7H4ClO2 , features a non-planar cation, the dihedral angle between the quinolinium and benzene residues being 18.98 (10)°. The cation adopts an E conformation about the C—N bond, and the amine group is oriented towards the quinolinium residue. In the crystal, N—H(...)O hydrogen bonds link two cations with two anions, forming a 20-membered {(...)OCO(...)HNC3NH}2 synthon. The dimeric units are connected into a linear supra­molecular chain along [100] via π–π inter­actions [centroid–centroid distance = 3.5625 (13) Å].

Related literature

For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969 [triangle]); Font et al. (1997 [triangle]); Kaminsky & Meltzer (1968 [triangle]); Musiol et al. (2006 [triangle]); Nakamura et al. (1999 [triangle]); Palmer et al. (1993 [triangle]); Ridley (2002 [triangle]); Sloboda et al. (1991 [triangle]); Tanenbaum & Tuffanelli (1980 [triangle]); Warshakoon et al. (2006 [triangle]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007 [triangle]); Cunico et al. (2006 [triangle]); da Silva et al. (2003 [triangle]); de Souza (2005 [triangle]). For a related crystallographic study on neutral species related to the title compound, see: Kaiser et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3204-scheme1.jpg

Experimental

Crystal data

  • C16H12Cl2N3 +·C7H4ClO2
  • M r = 472.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3204-efi1.jpg
  • a = 8.8777 (2) Å
  • b = 10.7064 (3) Å
  • c = 11.9807 (3) Å
  • α = 112.5318 (12)°
  • β = 91.6382 (15)°
  • γ = 97.4362 (15)°
  • V = 1039.17 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 120 K
  • 0.06 × 0.04 × 0.03 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.922, T max = 1.000
  • 16836 measured reflections
  • 4746 independent reflections
  • 3949 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.104
  • S = 1.07
  • 4746 reflections
  • 283 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049794/hg2605sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049794/hg2605Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

The majority of anti-malarial drugs, such as chloroquine (Tanenbaum & Tuffanelli, 1980), mefloquine (Palmer et al., 1993), primaquine (Elslager et al., 1969) and amodiaquine (Ridley, 2002), possess a quinoline ring, the mainstay of malaria chemotherapy for much of the past 40 years (Font et al., 1997; Kaminsky & Meltzer, 1968; Musiol et al., 2006; Nakamura et al., 1999; Sloboda et al., 1991; Warshakoon et al., 2006). The above motivates our studies aimed towards the development anti-malarial compounds based on the quinoline nucleus (Andrade et al., 2007; Cunico et al., 2006; da Silva et al., 2003; de Souza et al., 2005. The title salt, (I), was prepared as a part of these investigations.

The cation in (I) is twisted about the N2–N3 bond, Fig. 1, as seen in the C3–N2–N3–C10 torsion angle of -168.3 (2) °. This is also reflected in the dihedral angle formed between the quinolinium (maximum deviation = 0.043 (2) for the C2 atom) and benzene planes of 18.98 (10) °. The conformation about the C10═N3 bond is E, and the amine-H is oriented towards the quinolinium residue as seen in related structures (Kaiser et al., 2009). The benzoate anion, Fig. 2, is planar with the O1–C17–C18–C19 torsion angle being -10.0 (3) °. The C17–O1, O2 distances in the carboxylate residue are 1.250 (3) and 1.269 (3) Å, respectively, consistent with deprotonation.

The crystal packing is dominated by N–H···O hydrogen bonding, Table 1. A pair of centrosymmetrically related benzoate anions each bridge the quinolinium-H and amine-H atoms of a cation to form a centrosymmetric 20-membered {···OCO···HNC3NH}2 synthon, Fig. 3. The dimeric units face each other to allow the formation of π–π interactions between the quinolinium residues with the Cg(N1, C1—C4, C9)···Cg(C4—C9)i distance = 3.5625 (13) Å for i: -x, -y, 1 - z. The net result is the formation of linear supramolecular chains aligned along [1 0 0], Fig. 4.

Experimental

A solution of 7-chloro-4-hydrazinylquinoline (0.20 g, 1.0 mmol) and 3-chorobenzaldehyde (1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue was washed with cold Et2O (3 x 10 ml) and recrystallized from EtOH m. pt. 463–465 K, yield 0.24 g The sample for the X-ray study was slowly grown from moist EtOH and the compound isolated was found to be the salt with 3-chlorobenzoic acid. MS/ESI: 315 [C16H10Cl2N3], based on 35Cl. IR [KBr, cm-1] ν 3197 (NH), 1611 and 1552 (CN), 1362 (C—O). The 3-chlorobenzoic acid was subsequently found to be an impurity in the 3-chlorobenzaldehyde reagent.

Refinement

The quinolinium- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The amine-bound H atom was located from a difference map and refined (N–H = 0.89 (3) Å) with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of the cation in (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
Fig. 2.
The molecular structure of the anion in (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
Fig. 3.
View of the centrosymmetric 20-membered {···OCO···HNC3NH}2 synthon in (I) showing the N–H···O hydrogen bonding as orange dashed lines. Colour code: Cl, cyan; O, red; N, blue; ...
Fig. 4.
A view of the linear supramolecular chain aligned along [1 0 0] in (I) where the dimeric aggregates illustrated in Fig. 3 are linked by π–π interactions (pink dashed lines).

Crystal data

C16H12Cl2N3+·C7H4ClO2Z = 2
Mr = 472.74F(000) = 484
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8777 (2) ÅCell parameters from 16230 reflections
b = 10.7064 (3) Åθ = 2.9–27.5°
c = 11.9807 (3) ŵ = 0.47 mm1
α = 112.5318 (12)°T = 120 K
β = 91.6382 (15)°Block, yellow
γ = 97.4362 (15)°0.06 × 0.04 × 0.03 mm
V = 1039.17 (5) Å3

Data collection

Nonius KappaCCD area-detector diffractometer4746 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3949 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −13→13
Tmin = 0.922, Tmax = 1.000l = −15→15
16836 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0078P)2 + 1.9095P] where P = (Fo2 + 2Fc2)/3
4746 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.20629 (7)−0.15682 (6)0.12224 (5)0.02306 (14)
Cl20.85051 (7)0.10932 (6)1.02577 (5)0.02465 (15)
N10.0669 (2)−0.2783 (2)0.43607 (18)0.0167 (4)
H1N−0.007 (3)−0.349 (3)0.417 (2)0.020*
N20.3644 (2)0.08652 (19)0.57378 (17)0.0161 (4)
H2N0.35800.14990.54480.019*
N30.4690 (2)0.1101 (2)0.67007 (17)0.0165 (4)
C10.1764 (3)−0.2566 (2)0.5229 (2)0.0176 (5)
H10.1815−0.32460.55500.021*
C20.2826 (3)−0.1393 (2)0.5677 (2)0.0169 (5)
H20.3619−0.12900.62690.020*
C30.2724 (2)−0.0350 (2)0.5250 (2)0.0150 (4)
C40.1584 (2)−0.0590 (2)0.4281 (2)0.0152 (4)
C50.1406 (3)0.0354 (2)0.3736 (2)0.0160 (4)
H50.20700.12030.40120.019*
C60.0291 (3)0.0063 (2)0.2819 (2)0.0178 (5)
H60.01730.07090.24690.021*
C7−0.0678 (3)−0.1204 (2)0.2400 (2)0.0174 (5)
C8−0.0558 (3)−0.2149 (2)0.2900 (2)0.0163 (4)
H8−0.1226−0.29960.26070.020*
C90.0570 (2)−0.1842 (2)0.3852 (2)0.0148 (4)
C100.5321 (3)0.2345 (2)0.7240 (2)0.0183 (5)
H100.50720.30080.69480.022*
C110.6420 (3)0.2766 (2)0.8300 (2)0.0190 (5)
C120.6897 (3)0.1816 (2)0.8718 (2)0.0178 (5)
H120.65190.08690.83130.021*
C130.7928 (3)0.2280 (2)0.9730 (2)0.0197 (5)
C140.8501 (3)0.3651 (3)1.0350 (2)0.0262 (6)
H140.92080.39451.10430.031*
C150.8015 (3)0.4585 (3)0.9931 (2)0.0316 (6)
H150.83880.55321.03460.038*
C160.6988 (3)0.4153 (3)0.8908 (2)0.0274 (6)
H160.66730.48030.86250.033*
Cl30.12274 (6)0.37851 (6)0.30843 (6)0.02426 (14)
O10.67939 (19)0.66372 (16)0.43847 (15)0.0212 (4)
O20.84256 (18)0.51324 (17)0.36860 (16)0.0216 (4)
C170.7100 (3)0.5460 (2)0.3827 (2)0.0165 (5)
C180.5784 (3)0.4312 (2)0.3217 (2)0.0164 (4)
C190.4291 (3)0.4533 (2)0.3442 (2)0.0173 (5)
H190.40910.53820.40190.021*
C200.3100 (3)0.3500 (2)0.2816 (2)0.0182 (5)
C210.3357 (3)0.2254 (2)0.1967 (2)0.0218 (5)
H210.25260.15640.15350.026*
C220.4848 (3)0.2028 (3)0.1756 (2)0.0243 (5)
H220.50410.11750.11830.029*
C230.6058 (3)0.3051 (2)0.2385 (2)0.0206 (5)
H230.70770.28890.22450.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0229 (3)0.0245 (3)0.0229 (3)−0.0014 (2)−0.0066 (2)0.0127 (2)
Cl20.0323 (3)0.0204 (3)0.0219 (3)0.0074 (2)−0.0037 (2)0.0082 (2)
N10.0171 (10)0.0126 (9)0.0215 (10)0.0015 (7)0.0001 (8)0.0081 (8)
N20.0163 (9)0.0142 (9)0.0183 (10)0.0005 (7)−0.0038 (7)0.0080 (8)
N30.0153 (9)0.0180 (10)0.0158 (9)0.0014 (7)−0.0011 (7)0.0067 (8)
C10.0199 (11)0.0147 (11)0.0211 (12)0.0062 (9)0.0018 (9)0.0092 (9)
C20.0163 (11)0.0156 (11)0.0181 (11)0.0020 (9)−0.0011 (9)0.0061 (9)
C30.0127 (10)0.0143 (11)0.0177 (11)0.0041 (8)0.0035 (8)0.0051 (9)
C40.0141 (10)0.0159 (11)0.0165 (11)0.0047 (8)0.0028 (8)0.0065 (9)
C50.0173 (11)0.0125 (10)0.0178 (11)0.0025 (8)0.0033 (9)0.0052 (9)
C60.0210 (12)0.0159 (11)0.0188 (11)0.0043 (9)0.0030 (9)0.0087 (9)
C70.0162 (11)0.0200 (12)0.0156 (11)0.0033 (9)0.0003 (9)0.0067 (9)
C80.0161 (11)0.0132 (10)0.0177 (11)−0.0001 (8)0.0014 (9)0.0048 (9)
C90.0159 (11)0.0128 (10)0.0162 (11)0.0025 (8)0.0019 (8)0.0060 (9)
C100.0195 (11)0.0164 (11)0.0195 (12)0.0004 (9)−0.0005 (9)0.0085 (9)
C110.0211 (12)0.0179 (11)0.0179 (11)0.0009 (9)−0.0007 (9)0.0075 (9)
C120.0183 (11)0.0150 (11)0.0177 (11)−0.0006 (9)−0.0001 (9)0.0050 (9)
C130.0231 (12)0.0198 (12)0.0190 (12)0.0044 (9)0.0018 (9)0.0103 (10)
C140.0321 (14)0.0227 (13)0.0207 (12)−0.0044 (11)−0.0088 (10)0.0083 (10)
C150.0453 (17)0.0165 (12)0.0277 (14)−0.0068 (11)−0.0131 (12)0.0077 (11)
C160.0376 (15)0.0193 (12)0.0257 (13)−0.0007 (11)−0.0082 (11)0.0115 (11)
Cl30.0161 (3)0.0240 (3)0.0307 (3)0.0009 (2)−0.0005 (2)0.0094 (3)
O10.0227 (9)0.0133 (8)0.0253 (9)0.0007 (6)−0.0033 (7)0.0061 (7)
O20.0170 (8)0.0168 (8)0.0296 (10)0.0006 (6)−0.0019 (7)0.0085 (7)
C170.0195 (11)0.0154 (11)0.0166 (11)0.0018 (9)−0.0025 (9)0.0092 (9)
C180.0180 (11)0.0145 (11)0.0175 (11)−0.0012 (8)−0.0011 (9)0.0085 (9)
C190.0208 (11)0.0145 (11)0.0165 (11)0.0020 (9)−0.0003 (9)0.0065 (9)
C200.0168 (11)0.0195 (12)0.0205 (11)0.0012 (9)0.0002 (9)0.0108 (9)
C210.0222 (12)0.0180 (12)0.0208 (12)−0.0049 (9)−0.0012 (10)0.0054 (10)
C220.0279 (13)0.0158 (11)0.0233 (13)−0.0006 (10)0.0033 (10)0.0024 (10)
C230.0208 (12)0.0195 (12)0.0211 (12)0.0019 (9)0.0029 (9)0.0077 (10)

Geometric parameters (Å, °)

Cl1—C71.735 (2)C11—C161.395 (3)
Cl2—C131.744 (2)C11—C121.398 (3)
N1—C11.334 (3)C12—C131.383 (3)
N1—C91.373 (3)C12—H120.9500
N1—H1N0.89 (3)C13—C141.384 (3)
N2—C31.348 (3)C14—C151.386 (4)
N2—N31.383 (3)C14—H140.9500
N2—H2N0.8800C15—C161.392 (4)
N3—C101.277 (3)C15—H150.9500
C1—C21.379 (3)C16—H160.9500
C1—H10.9500Cl3—C201.745 (2)
C2—C31.407 (3)O1—C171.250 (3)
C2—H20.9500O2—C171.269 (3)
C3—C41.440 (3)C17—C181.517 (3)
C4—C91.416 (3)C18—C191.392 (3)
C4—C51.420 (3)C18—C231.394 (3)
C5—C61.371 (3)C19—C201.385 (3)
C5—H50.9500C19—H190.9500
C6—C71.408 (3)C20—C211.385 (3)
C6—H60.9500C21—C221.389 (4)
C7—C81.372 (3)C21—H210.9500
C8—C91.405 (3)C22—C231.392 (3)
C8—H80.9500C22—H220.9500
C10—C111.465 (3)C23—H230.9500
C10—H100.9500
C1—N1—C9120.8 (2)C16—C11—C10118.8 (2)
C1—N1—H1N119.7 (17)C12—C11—C10121.6 (2)
C9—N1—H1N119.0 (17)C13—C12—C11118.9 (2)
C3—N2—N3119.06 (18)C13—C12—H12120.6
C3—N2—H2N120.5C11—C12—H12120.6
N3—N2—H2N120.5C12—C13—C14122.4 (2)
C10—N3—N2114.66 (19)C12—C13—Cl2118.72 (18)
N1—C1—C2122.5 (2)C14—C13—Cl2118.83 (19)
N1—C1—H1118.8C13—C14—C15118.2 (2)
C2—C1—H1118.8C13—C14—H14120.9
C1—C2—C3119.4 (2)C15—C14—H14120.9
C1—C2—H2120.3C14—C15—C16120.9 (2)
C3—C2—H2120.3C14—C15—H15119.6
N2—C3—C2121.7 (2)C16—C15—H15119.6
N2—C3—C4119.7 (2)C15—C16—C11120.0 (2)
C2—C3—C4118.6 (2)C15—C16—H16120.0
C9—C4—C5117.9 (2)C11—C16—H16120.0
C9—C4—C3118.0 (2)O1—C17—O2125.9 (2)
C5—C4—C3124.1 (2)O1—C17—C18118.0 (2)
C6—C5—C4121.1 (2)O2—C17—C18116.1 (2)
C6—C5—H5119.4C19—C18—C23119.6 (2)
C4—C5—H5119.4C19—C18—C17120.1 (2)
C5—C6—C7119.3 (2)C23—C18—C17120.1 (2)
C5—C6—H6120.4C20—C19—C18119.3 (2)
C7—C6—H6120.4C20—C19—H19120.4
C8—C7—C6121.8 (2)C18—C19—H19120.4
C8—C7—Cl1119.40 (18)C19—C20—C21121.6 (2)
C6—C7—Cl1118.75 (17)C19—C20—Cl3119.25 (18)
C7—C8—C9118.8 (2)C21—C20—Cl3119.13 (18)
C7—C8—H8120.6C20—C21—C22119.1 (2)
C9—C8—H8120.6C20—C21—H21120.5
N1—C9—C8118.6 (2)C22—C21—H21120.5
N1—C9—C4120.5 (2)C21—C22—C23120.0 (2)
C8—C9—C4120.9 (2)C21—C22—H22120.0
N3—C10—C11121.2 (2)C23—C22—H22120.0
N3—C10—H10119.4C22—C23—C18120.4 (2)
C11—C10—H10119.4C22—C23—H23119.8
C16—C11—C12119.6 (2)C18—C23—H23119.8
C3—N2—N3—C10−168.3 (2)C11—C12—C13—C140.3 (4)
C9—N1—C1—C21.3 (3)C11—C12—C13—Cl2179.37 (18)
N1—C1—C2—C32.9 (3)C12—C13—C14—C150.0 (4)
N3—N2—C3—C2−1.5 (3)Cl2—C13—C14—C15−179.1 (2)
N3—N2—C3—C4177.33 (19)C13—C14—C15—C16−0.5 (4)
C1—C2—C3—N2173.8 (2)C14—C15—C16—C110.7 (4)
C1—C2—C3—C4−5.1 (3)C12—C11—C16—C15−0.4 (4)
N2—C3—C4—C9−175.6 (2)C10—C11—C16—C15178.9 (2)
C2—C3—C4—C93.3 (3)O1—C17—C18—C19−10.0 (3)
N2—C3—C4—C53.8 (3)O2—C17—C18—C19172.1 (2)
C2—C3—C4—C5−177.3 (2)O1—C17—C18—C23166.8 (2)
C9—C4—C5—C6−0.3 (3)O2—C17—C18—C23−11.1 (3)
C3—C4—C5—C6−179.7 (2)C23—C18—C19—C20−1.1 (3)
C4—C5—C6—C7−0.9 (3)C17—C18—C19—C20175.7 (2)
C5—C6—C7—C81.2 (3)C18—C19—C20—C21−0.3 (3)
C5—C6—C7—Cl1−178.96 (18)C18—C19—C20—Cl3−179.20 (17)
C6—C7—C8—C9−0.3 (3)C19—C20—C21—C221.2 (4)
Cl1—C7—C8—C9179.89 (17)Cl3—C20—C21—C22−179.88 (19)
C1—N1—C9—C8176.9 (2)C20—C21—C22—C23−0.7 (4)
C1—N1—C9—C4−3.2 (3)C21—C22—C23—C18−0.7 (4)
C7—C8—C9—N1179.0 (2)C19—C18—C23—C221.7 (4)
C7—C8—C9—C4−1.0 (3)C17—C18—C23—C22−175.2 (2)
C5—C4—C9—N1−178.7 (2)C2—C3—N2—N3−1.5 (3)
C3—C4—C9—N10.8 (3)C4—C3—N2—N3177.33 (19)
C5—C4—C9—C81.3 (3)N3—C10—C11—C124.1 (4)
C3—C4—C9—C8−179.3 (2)N3—C10—C11—C16−175.2 (2)
N2—N3—C10—C11178.2 (2)C19—C18—C17—O1−10.0 (3)
N3—C10—C11—C16−175.2 (2)C19—C18—C17—O2172.1 (2)
N3—C10—C11—C124.1 (4)C23—C18—C17—O1166.8 (2)
C16—C11—C12—C13−0.1 (4)C23—C18—C17—O2−11.1 (3)
C10—C11—C12—C13−179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···O2i0.89 (3)1.76 (3)2.641 (3)175 (3)
N2—H2n···O1ii0.882.002.809 (3)152

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2605).

References

  • Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198. [PubMed]
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.
  • Elslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600–607. [PubMed]
  • Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug. Des. Disc. 14, 259–272. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.
  • Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163. [PubMed]
  • Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598. [PubMed]
  • Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Palmer, K. J., Holliday, S. M. & and Brogden, R. N. (1993). Drugs, 45, 430–475. [PubMed]
  • Ridley, R. G. (2002). Nature (London), 415, 686–693. [PubMed]
  • Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21–39. [PubMed]
  • Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860. [PubMed]
  • Souza, M. V. N. de (2005). Mini Rev. Med. Chem. 5, 1009–1017. [PubMed]
  • Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591. [PubMed]
  • Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography