PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3012.
Published online 2009 November 7. doi:  10.1107/S1600536809045486
PMCID: PMC2972172

4-(2-Hydroxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one

Abstract

The mol­ecular skeleton of the title mol­ecule, C11H9NO3, is approximately planar (r.m.s. deviation = 0.0056 Å); the two rings form a dihedral angle of 6.5 (1)°. In the crystal structure, inter­molecular O—H(...)N hydrogen bonds involving the H atom of the hydr­oxy group and the N atom of the isoxazole ring link mol­ecules into chains running along the c axis.

Related literature

For the biological activity of aryl­methyl­ene isoxazolone derivatives, see: Ishioka et al. (2002 [triangle]); Liu et al. (2005 [triangle]). For related structures, see: Cocivera et al. (1976 [triangle]); Villemin et al. (1993 [triangle]); Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3012-scheme1.jpg

Experimental

Crystal data

  • C11H9NO3
  • M r = 203.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3012-efi1.jpg
  • a = 8.0172 (12) Å
  • b = 6.8620 (9) Å
  • c = 17.535 (2) Å
  • β = 99.962 (2)°
  • V = 950.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 K
  • 0.43 × 0.30 × 0.28 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.956, T max = 0.971
  • 4598 measured reflections
  • 1669 independent reflections
  • 1067 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.125
  • S = 1.03
  • 1669 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2004 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045486/cv2639sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045486/cv2639Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Foundation of Jiangsu Key Laboratory of Marine Biotechnology for financial support (grant No. 2007HS009).

supplementary crystallographic information

Comment

Arylmethylene isoxazolone derivatives are effective anti-psychotics in the treatment of depression and schizophrenia. The study about arylmethylene isoxazolone derivatives mainly concentrates in the biological activities (Ishioka et al., 2002; Liu et al., 2005). However, structural studies of them have rarely been reported. As a part of our investigation on arylmethylene isoxazolone derivatives, we report here the structure of the title compound, (I), synthesized by three component condensation reaction of methyl acetoacetate, hydroxylamine with salicylaldehyde in aqueous media under ultrasonic irradiation.

In (I) (Fig. 1), all bond lengths and angles agree well with those reported for the related compounds (Cocivera et al., 1976; Villemin et al., 1993; Zhang et al., 2008). The molecular structure adopts a Z-configuration about the C2=C5 double bond. The hydroxy groups and the isoxazol groups are involved in intermolecular O—H···N hydrogen bonds (Table 1), which link the molecules into chain structure, hydroxy O atom in the molecule acts as hydrogen-bond donor to isoxazol N atom in the neighbouring molecule, so forming a chain structure.

Experimental

A mixture of methyl acetoacetate (4 mol), hydroxylamine hydrochloride (4 mmol), and pyridine(4 mmol) in distilled water(10 ml) was irradiated in the water bath of an ultrasonic cleaner for 10 min., then salicylaldehyde(4 mmol) was slowly added to the mixture. The resulting mixture was irradiated in the water bath of an ultrasonic cleaner for 1.5 h. The solution was left at room temperature overnight, the obtained mushy solution was filtered and the solid was washed with cold water and ethanol. The crude product was recrystallized from ethanol to afford the desired product as a yellow solid. Single crystal of (I) were obtained by slow evaporation of aqueous ethanol(95%) solution at ambient temperature after 7 d. Elemental analysis, calculated for C11 H9 N O3: C 65.02, H 4.46, N 6.89%; found: C 65.09. H 4.49, N 6.92%.

Refinement

All hydrogen atoms were geometrically positioned (C—H = 0.93–0.96 A °, O—H = 0.82 A °) and allowed to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C,O).

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C11H9NO3F(000) = 424
Mr = 203.19Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1182 reflections
a = 8.0172 (12) Åθ = 2.4–22.5°
b = 6.8620 (9) ŵ = 0.11 mm1
c = 17.535 (2) ÅT = 298 K
β = 99.962 (2)°Prism, yellow
V = 950.1 (2) Å30.43 × 0.30 × 0.28 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1669 independent reflections
Radiation source: fine-focus sealed tube1067 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.956, Tmax = 0.971k = −8→7
4598 measured reflectionsl = −19→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2598P] where P = (Fo2 + 2Fc2)/3
1669 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.1424 (3)0.7335 (3)0.29966 (10)0.0495 (6)
O10.2203 (2)0.5472 (2)0.29343 (8)0.0573 (5)
O20.3282 (3)0.3078 (3)0.37132 (10)0.0668 (6)
O30.1516 (2)0.6467 (2)0.64469 (8)0.0579 (5)
H30.14160.65050.69040.087*
C10.2599 (3)0.4642 (4)0.36509 (12)0.0474 (6)
C20.2013 (3)0.5995 (3)0.41967 (12)0.0372 (6)
C30.1320 (3)0.7584 (3)0.37120 (12)0.0404 (6)
C40.0543 (3)0.9391 (3)0.39499 (13)0.0541 (7)
H4A0.01851.01950.35040.081*
H4B0.13581.00850.43160.081*
H4C−0.04180.90650.41840.081*
C50.2050 (3)0.5923 (3)0.49738 (12)0.0388 (6)
H50.15410.69920.51650.047*
C60.2713 (3)0.4536 (3)0.55603 (11)0.0377 (5)
C70.2432 (3)0.4893 (3)0.63213 (12)0.0406 (6)
C80.3061 (3)0.3630 (4)0.69154 (13)0.0483 (6)
H80.28660.38710.74140.058*
C90.3967 (3)0.2032 (4)0.67709 (14)0.0567 (7)
H90.43940.11940.71750.068*
C100.4262 (3)0.1639 (4)0.60287 (15)0.0572 (7)
H100.48760.05430.59340.069*
C110.3640 (3)0.2882 (3)0.54405 (13)0.0481 (6)
H110.38410.26150.49440.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0615 (14)0.0559 (13)0.0319 (11)0.0024 (11)0.0107 (9)0.0008 (9)
O10.0808 (13)0.0632 (11)0.0295 (9)0.0095 (10)0.0140 (8)−0.0030 (8)
O20.0956 (15)0.0587 (12)0.0470 (11)0.0183 (11)0.0150 (10)−0.0060 (9)
O30.0894 (14)0.0585 (11)0.0271 (8)0.0131 (10)0.0142 (8)−0.0018 (7)
C10.0577 (17)0.0501 (15)0.0351 (13)−0.0025 (13)0.0100 (10)−0.0013 (11)
C20.0395 (14)0.0437 (13)0.0291 (11)−0.0061 (10)0.0074 (9)−0.0026 (10)
C30.0402 (14)0.0482 (14)0.0331 (12)−0.0072 (11)0.0072 (10)−0.0003 (10)
C40.0650 (18)0.0524 (15)0.0454 (14)0.0074 (14)0.0109 (12)0.0061 (12)
C50.0410 (14)0.0423 (13)0.0343 (12)−0.0040 (11)0.0101 (10)−0.0030 (10)
C60.0385 (13)0.0441 (13)0.0304 (11)−0.0061 (11)0.0056 (9)0.0018 (10)
C70.0434 (14)0.0433 (13)0.0349 (12)−0.0046 (11)0.0060 (9)−0.0011 (10)
C80.0493 (16)0.0619 (16)0.0338 (13)−0.0047 (13)0.0078 (11)0.0089 (12)
C90.0494 (17)0.0666 (18)0.0532 (16)0.0012 (14)0.0067 (12)0.0243 (13)
C100.0520 (17)0.0590 (16)0.0622 (17)0.0088 (14)0.0144 (13)0.0145 (14)
C110.0470 (15)0.0562 (15)0.0438 (14)0.0009 (13)0.0151 (11)−0.0003 (12)

Geometric parameters (Å, °)

N1—C31.283 (3)C5—C61.434 (3)
N1—O11.435 (2)C5—H50.9300
O1—C11.366 (3)C6—C111.392 (3)
O2—C11.201 (3)C6—C71.413 (3)
O3—C71.346 (3)C7—C81.382 (3)
O3—H30.8200C8—C91.363 (3)
C1—C21.467 (3)C8—H80.9300
C2—C51.359 (3)C9—C101.389 (4)
C2—C31.434 (3)C9—H90.9300
C3—C41.479 (3)C10—C111.364 (3)
C4—H4A0.9600C10—H100.9300
C4—H4B0.9600C11—H110.9300
C4—H4C0.9600
C3—N1—O1107.22 (17)C6—C5—H5113.4
C1—O1—N1109.63 (16)C11—C6—C7117.43 (19)
C7—O3—H3109.5C11—C6—C5125.0 (2)
O2—C1—O1119.1 (2)C7—C6—C5117.5 (2)
O2—C1—C2134.3 (2)O3—C7—C8121.2 (2)
O1—C1—C2106.7 (2)O3—C7—C6118.35 (19)
C5—C2—C3124.1 (2)C8—C7—C6120.4 (2)
C5—C2—C1132.6 (2)C9—C8—C7120.1 (2)
C3—C2—C1103.26 (18)C9—C8—H8120.0
N1—C3—C2113.2 (2)C7—C8—H8120.0
N1—C3—C4119.3 (2)C8—C9—C10120.9 (2)
C2—C3—C4127.5 (2)C8—C9—H9119.6
C3—C4—H4A109.5C10—C9—H9119.6
C3—C4—H4B109.5C11—C10—C9119.2 (3)
H4A—C4—H4B109.5C11—C10—H10120.4
C3—C4—H4C109.5C9—C10—H10120.4
H4A—C4—H4C109.5C10—C11—C6122.0 (2)
H4B—C4—H4C109.5C10—C11—H11119.0
C2—C5—C6133.2 (2)C6—C11—H11119.0
C2—C5—H5113.4
C3—N1—O1—C1−1.5 (3)C1—C2—C5—C62.1 (4)
N1—O1—C1—O2−179.2 (2)C2—C5—C6—C114.8 (4)
N1—O1—C1—C21.5 (2)C2—C5—C6—C7−176.4 (2)
O2—C1—C2—C50.0 (5)C11—C6—C7—O3−178.9 (2)
O1—C1—C2—C5179.1 (2)C5—C6—C7—O32.2 (3)
O2—C1—C2—C3179.9 (3)C11—C6—C7—C8−0.1 (3)
O1—C1—C2—C3−1.0 (2)C5—C6—C7—C8−179.0 (2)
O1—N1—C3—C20.9 (3)O3—C7—C8—C9179.2 (2)
O1—N1—C3—C4−179.32 (19)C6—C7—C8—C90.3 (4)
C5—C2—C3—N1180.0 (2)C7—C8—C9—C10−0.5 (4)
C1—C2—C3—N10.0 (3)C8—C9—C10—C110.3 (4)
C5—C2—C3—C40.2 (4)C9—C10—C11—C6−0.1 (4)
C1—C2—C3—C4−179.7 (2)C7—C6—C11—C10−0.1 (3)
C3—C2—C5—C6−177.8 (2)C5—C6—C11—C10178.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.072.852 (2)159

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2639).

References

  • Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn,Germany.
  • Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cocivera, M., Effio, A., Chen, H. E. & Vaish, S. (1976). J. Am. Chem. Soc. 98, 7362–7366.
  • Ishioka, T., Kubo, A., Koiso, Y., Nagasawa, K., Itai, A. & Hashimoto, Y. (2002). Bioorg. Med. Chem. 10, 1555–1566. [PubMed]
  • Liu, Z. G., Han, B., Liu, Q., Zhang, W., Yang, L., Liu, Z. L. & Yu, W. (2005). Synlett, pp. 1579–1580.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Villemin, D., Martin, B. & Garrigues, B. (1993). Synth. Commun. 23, 2251–2257.
  • Zhang, Y. Q., Ma, J. J., Wang, C., Li, J. C., Zhang, D. N., Zang, X. H. & Li, J. (2008). Chin. J. Org. Chem. 28, 141–144.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography