PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3203.
Published online 2009 November 25. doi:  10.1107/S1600536809049782
PMCID: PMC2972164

N-(2,6-Dimethyl­phen­yl)-2-(2-thien­yl)acetamide

Abstract

The thienyl ring in the title compound, C14H15NOS, is disordered over two diagonally opposite positions, the major component having a site-occupancy factor of 0.569 (3). The mol­ecule is highly twisted with respect to the central amide group, which is reflected in the dihedral angle formed between the thienyl and benzene rings of 77.01 (15)° [70.34 (18)° for the minor component]. In the crystal, mol­ecules self-associate into chains along [100] via N—H(...)O hydrogen bonds. The chains are reinforced by complementary C—H(...)O contacts.

Related literature

For a general overview of 2-substituted thio­phenes, see: Campaigne (1984 [triangle]); Kleemann et al. (2006 [triangle]). For recent bio­logical studies on 2-substituted thio­phenes, see: Lourenço et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3203-scheme1.jpg

Experimental

Crystal data

  • C14H15NOS
  • M r = 245.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3203-efi1.jpg
  • a = 4.7489 (2) Å
  • b = 11.7309 (5) Å
  • c = 11.8117 (4) Å
  • α = 100.981 (2)°
  • β = 95.427 (2)°
  • γ = 101.104 (2)°
  • V = 627.96 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 120 K
  • 0.16 × 0.06 × 0.02 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.896, T max = 1.000
  • 11243 measured reflections
  • 2840 independent reflections
  • 2388 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.121
  • S = 1.04
  • 2840 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809049782/hg2603sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809049782/hg2603Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

2-Substituted thiophenes have been found to have various uses, for example as dyestuffs, flavour agents, drugs, and inhibitors (Campaigne, 1984). Indeed, thiophenes are present in many natural and synthetic products with a wide range of pharmacological activities (Kleemann et al., 2006). The in vitro anti-mycobacterial activities of a series of N-(aryl)-2-thiophen-2-ylacetamide derivatives were recently investigated (Lourenço et al., 2007): encouraging activities were detected for some derivatives. The search for new drugs having anti-bacterial activity against Mycobacterium tuberculosis is a vital task due to the increase of multi-drug resistant tuberculosis (MDR-TB) and AIDS cases worldwide and the increasing resistance to the currently used main line drugs such as isoniazid and rifampin (http://www.who.int/tdr/diseases/tb/default.htm). It was in this context that the title compound, (I), was synthesized.

The central O1, N1, C5 and C6 moiety in (I), Fig. 1, is planar with the maximum deviation from the least-squares plane through these atoms being 0.0072 (13) Å for the C6 atom. Otherwise, the molecule is highly twisted as seen in the values of the S1–C1–C5–C6 and C6–N1–C7–C8 torsion angles of 102.98 (15) ° (-69.07 (18) ° for the minor component of the thienyl ring) and -116.27 (17) °, respectively. The dihedral angle between the planes through the thienyl and benzene rings are 77.01 (15) and 70.34 (18) ° for the major and minor components of the disordered thienyl ring, respectively.

In the crystal structure, molecules are connected into linear supramolecular chains via C(4), {···HNC(═O)}, synthons, Table 1 and Fig. 2. Chains, which are aligned along [1 0 0], are reinforced by complementary C5–H···O1 contacts, Table 1, so that the acceptor carbonyl-O1 atom is bifurcated.

Experimental

A solution of 2,6-dimethylaniline (2 mmol) and 2-thienylacetyl chloride (2 mmol) in tetrahydrofuran (20 ml), was stirred for 2 h at room temperature, water (30 ml) added and the mixture was extracted with ethyl acetate (2 x 20 ml). The combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried over MgSO4, filtered, and rotary evaporated to give the crude product, (yield 90%) which was recrystallized twice from EtOH. m. pt.: 405–406 K; CG/MS: m/z [M]+.: 245. 1H NMR [500.00 MHz, DMSO-d6] δ: 9.46 (s, 1H, NH), 7.38 (dd, 1H, J = 6.5, 2.0 Hz), 7.05–6.97 (m, 5H), 3.82 (s, 2H, CH2CO), 2.09 (s, 6H, Me) p.p.m. 13C NMR (125.0 MHz, DMSO-d6) δ: 167.7, 137.6, 135.1, 134.8, 127.6, 126.6, 126.4, 126.2, 124.8, 36.5, 17.9 p.p.m. IR (KBr, cm-1): νmax 1644 (CO).

Refinement

All H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(N, C). The thienyl ring was disordered with two diagonally opposed positions resolved for the S1 and C4 atoms. The major component had a site occupancy factor = 0.569 (3).

Figures

Fig. 1.
Molecular structure (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered thienyl ring is shown for reasons of clarity.
Fig. 2.
Supramolecular chain in (I) mediated by N–H···O hydrogen bonds (blue dashed lines). Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.

Crystal data

C14H15NOSZ = 2
Mr = 245.34F(000) = 260
Triclinic, P1Dx = 1.298 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7489 (2) ÅCell parameters from 2752 reflections
b = 11.7309 (5) Åθ = 2.9–27.5°
c = 11.8117 (4) ŵ = 0.24 mm1
α = 100.981 (2)°T = 120 K
β = 95.427 (2)°Block, pale-brown
γ = 101.104 (2)°0.16 × 0.06 × 0.02 mm
V = 627.96 (4) Å3

Data collection

Nonius KappaCCD area-detector diffractometer2840 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2388 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.043
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
[var phi] and ω scansh = −6→6
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −15→15
Tmin = 0.896, Tmax = 1.000l = −14→15
11243 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0468P)2 + 0.4276P] where P = (Fo2 + 2Fc2)/3
2840 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.5541 (2)0.54877 (11)0.35576 (11)0.0269 (3)
N10.1431 (3)0.61274 (11)0.31337 (12)0.0198 (3)
H1−0.04730.59490.30560.024*
C10.0819 (3)0.31943 (14)0.26257 (15)0.0227 (3)0.569 (3)
S10.2856 (3)0.21398 (11)0.27132 (12)0.0304 (3)0.569 (3)
C20.1372 (5)0.14166 (18)0.13388 (18)0.0401 (5)0.569 (3)
H20.18100.06800.10000.048*0.569 (3)
C3−0.0428 (5)0.19078 (19)0.0743 (2)0.0431 (5)0.569 (3)
H3−0.12830.1653−0.00480.052*0.569 (3)
C4−0.0767 (15)0.2938 (6)0.1609 (6)0.0469 (15)0.569 (3)
H4−0.21080.34050.14320.056*0.569 (3)
C1'0.0819 (3)0.31943 (14)0.26257 (15)0.0227 (3)0.431 (3)
S1'−0.1147 (5)0.32153 (18)0.13045 (17)0.0394 (5)0.431 (3)
C2'−0.0428 (5)0.19078 (19)0.0743 (2)0.0431 (5)0.431 (3)
H2'−0.13180.1500−0.00180.052*0.431 (3)
C3'0.1372 (5)0.14166 (18)0.13388 (18)0.0401 (5)0.431 (3)
H3'0.21570.07410.10850.048*0.431 (3)
C4'0.1802 (19)0.2208 (7)0.2491 (7)0.0390 (18)0.431 (3)
H4'0.27870.20090.31400.047*0.431 (3)
C50.1040 (3)0.42001 (14)0.36525 (14)0.0216 (3)
H5A0.19110.39950.43620.026*
H5B−0.09220.43260.37740.026*
C60.2889 (3)0.53354 (14)0.34521 (13)0.0199 (3)
C70.2832 (3)0.72479 (14)0.29151 (14)0.0203 (3)
C80.2477 (3)0.82854 (14)0.36467 (14)0.0220 (3)
C90.3851 (4)0.93774 (15)0.34462 (16)0.0279 (4)
H90.36091.00930.39220.033*
C100.5560 (4)0.94333 (16)0.25656 (17)0.0313 (4)
H100.65301.01830.24530.038*
C110.5854 (4)0.83976 (17)0.18487 (16)0.0308 (4)
H110.70230.84460.12430.037*
C120.4471 (4)0.72805 (16)0.19947 (14)0.0254 (4)
C130.0684 (4)0.82262 (15)0.46287 (15)0.0261 (4)
H13A−0.13230.78300.43110.039*
H13B0.07400.90340.50590.039*
H13C0.14690.77760.51550.039*
C140.4706 (4)0.61673 (17)0.11603 (16)0.0339 (4)
H14A0.55330.63810.04810.051*
H14B0.27760.56520.09090.051*
H14C0.59620.57450.15490.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0159 (5)0.0303 (6)0.0356 (7)0.0055 (5)0.0035 (5)0.0094 (5)
N10.0142 (6)0.0179 (6)0.0263 (7)0.0014 (5)0.0030 (5)0.0043 (5)
C10.0207 (7)0.0205 (8)0.0270 (8)0.0030 (6)0.0047 (6)0.0062 (6)
S10.0376 (7)0.0255 (5)0.0302 (6)0.0155 (5)0.0043 (5)0.0023 (4)
C20.0515 (12)0.0277 (10)0.0373 (11)0.0033 (9)0.0092 (9)0.0013 (8)
C30.0420 (11)0.0397 (11)0.0403 (11)0.0010 (9)0.0047 (9)−0.0009 (9)
C40.056 (3)0.041 (3)0.044 (4)0.019 (2)−0.007 (2)0.009 (2)
C1'0.0207 (7)0.0205 (8)0.0270 (8)0.0030 (6)0.0047 (6)0.0062 (6)
S1'0.0444 (8)0.0388 (10)0.0304 (10)0.0132 (7)−0.0092 (7)−0.0009 (6)
C2'0.0420 (11)0.0397 (11)0.0403 (11)0.0010 (9)0.0047 (9)−0.0009 (9)
C3'0.0515 (12)0.0277 (10)0.0373 (11)0.0033 (9)0.0092 (9)0.0013 (8)
C4'0.040 (4)0.044 (4)0.036 (4)0.011 (3)0.002 (3)0.014 (3)
C50.0204 (7)0.0190 (7)0.0258 (8)0.0043 (6)0.0043 (6)0.0051 (6)
C60.0184 (7)0.0213 (7)0.0188 (7)0.0042 (6)0.0030 (6)0.0015 (6)
C70.0165 (7)0.0204 (8)0.0229 (8)0.0016 (6)−0.0004 (6)0.0059 (6)
C80.0182 (7)0.0226 (8)0.0248 (8)0.0033 (6)0.0017 (6)0.0059 (6)
C90.0275 (8)0.0218 (8)0.0345 (9)0.0047 (7)0.0040 (7)0.0073 (7)
C100.0306 (9)0.0266 (9)0.0372 (10)−0.0013 (7)0.0058 (8)0.0146 (8)
C110.0309 (9)0.0358 (10)0.0270 (9)0.0022 (7)0.0095 (7)0.0125 (8)
C120.0238 (8)0.0298 (9)0.0224 (8)0.0053 (7)0.0028 (6)0.0060 (7)
C130.0241 (8)0.0217 (8)0.0321 (9)0.0038 (6)0.0088 (7)0.0033 (7)
C140.0389 (10)0.0379 (10)0.0237 (9)0.0065 (8)0.0103 (8)0.0024 (8)

Geometric parameters (Å, °)

O1—C61.2285 (19)C4'—H4'0.9500
N1—C61.347 (2)C5—C61.520 (2)
N1—C71.4360 (19)C5—H5A0.9900
N1—H10.8800C5—H5B0.9900
C1—C41.305 (7)C7—C121.398 (2)
C1—C51.502 (2)C7—C81.401 (2)
C1—S11.723 (2)C8—C91.395 (2)
S1—C21.697 (2)C8—C131.507 (2)
C2—C31.337 (3)C9—C101.382 (3)
C2—H20.9500C9—H90.9500
C3—C41.472 (7)C10—C111.382 (3)
C3—H30.9500C10—H100.9500
C4—H40.9500C11—C121.398 (2)
C1'—C4'1.317 (9)C11—H110.9500
C1'—C51.502 (2)C12—C141.509 (2)
C1'—S1'1.748 (3)C13—H13A0.9800
S1'—C2'1.663 (3)C13—H13B0.9800
C2'—C3'1.337 (3)C13—H13C0.9800
C2'—H2'0.9500C14—H14A0.9800
C3'—C4'1.466 (8)C14—H14B0.9800
C3'—H3'0.9500C14—H14C0.9800
C6—N1—C7123.24 (13)C6—C5—H5B109.6
C6—N1—H1118.4H5A—C5—H5B108.1
C7—N1—H1118.4O1—C6—N1123.38 (15)
C4—C1—C5130.6 (3)O1—C6—C5120.78 (14)
C4—C1—S1109.9 (3)N1—C6—C5115.82 (13)
C5—C1—S1119.57 (13)C12—C7—C8122.10 (14)
C2—S1—C189.60 (12)C12—C7—N1120.16 (14)
C3—C2—S1118.43 (17)C8—C7—N1117.74 (13)
C3—C2—H2120.8C9—C8—C7118.09 (15)
S1—C2—H2120.8C9—C8—C13120.84 (15)
C2—C3—C4103.3 (3)C7—C8—C13121.07 (14)
C2—C3—H3128.3C10—C9—C8120.92 (16)
C4—C3—H3128.3C10—C9—H9119.5
C1—C4—C3118.4 (5)C8—C9—H9119.5
C1—C4—H4120.8C11—C10—C9119.88 (16)
C3—C4—H4120.8C11—C10—H10120.1
C4'—C1'—C5132.7 (4)C9—C10—H10120.1
C4'—C1'—S1'108.1 (4)C10—C11—C12121.52 (16)
C5—C1'—S1'119.22 (13)C10—C11—H11119.2
C2'—S1'—C1'88.81 (14)C12—C11—H11119.2
C3'—C2'—S1'121.55 (19)C11—C12—C7117.44 (16)
C3'—C2'—H2'119.2C11—C12—C14120.33 (15)
S1'—C2'—H2'119.2C7—C12—C14122.21 (15)
C2'—C3'—C4'100.8 (4)C8—C13—H13A109.5
C2'—C3'—H3'129.6C8—C13—H13B109.5
C4'—C3'—H3'129.6H13A—C13—H13B109.5
C1'—C4'—C3'119.9 (6)C8—C13—H13C109.5
C1'—C4'—H4'120.1H13A—C13—H13C109.5
C3'—C4'—H4'120.1H13B—C13—H13C109.5
C1'—C5—C6110.43 (13)C12—C14—H14A109.5
C1—C5—C6110.43 (13)C12—C14—H14B109.5
C1'—C5—H5A109.6H14A—C14—H14B109.5
C1—C5—H5A109.6C12—C14—H14C109.5
C6—C5—H5A109.6H14A—C14—H14C109.5
C1'—C5—H5B109.6H14B—C14—H14C109.5
C1—C5—H5B109.6
C4—C1—S1—C2−0.1 (4)C7—N1—C6—C5179.66 (13)
C5—C1—S1—C2179.05 (14)C1—C5—C6—O1−76.75 (19)
C1—S1—C2—C34.17 (19)C1—C5—C6—N1101.88 (16)
S1—C2—C3—C4−6.2 (4)C6—N1—C7—C1264.1 (2)
C5—C1—C4—C3177.3 (3)C6—N1—C7—C8−116.27 (17)
S1—C1—C4—C3−3.7 (6)C12—C7—C8—C9−0.9 (2)
C2—C3—C4—C16.3 (6)N1—C7—C8—C9179.47 (14)
C4'—C1'—S1'—C2'0.3 (4)C12—C7—C8—C13179.62 (15)
C5—C1'—S1'—C2'−178.34 (14)N1—C7—C8—C130.0 (2)
C1'—S1'—C2'—C3'−6.5 (2)C7—C8—C9—C10−1.3 (3)
S1'—C2'—C3'—C4'9.5 (4)C13—C8—C9—C10178.25 (16)
C5—C1'—C4'—C3'−176.3 (3)C8—C9—C10—C111.9 (3)
S1'—C1'—C4'—C3'5.4 (7)C9—C10—C11—C12−0.4 (3)
C2'—C3'—C4'—C1'−9.1 (7)C10—C11—C12—C7−1.6 (3)
C4'—C1'—C5—C6112.7 (5)C10—C11—C12—C14176.81 (17)
S1'—C1'—C5—C6−69.07 (18)C8—C7—C12—C112.3 (2)
C4—C1—C5—C6−78.1 (5)N1—C7—C12—C11−178.09 (15)
S1—C1—C5—C6102.98 (15)C8—C7—C12—C14−176.12 (16)
C7—N1—C6—O1−1.8 (2)N1—C7—C12—C143.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.042.8701 (18)157
C5—H5b···O1i0.992.383.2622 (19)148

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2603).

References

  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Campaigne, E. (1984). In Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky C. W. & Rees, pp. 863–934. Oxford: Pergamon.
  • Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  • Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.
  • Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895–6898. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography