PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3004–o3005.
Published online 2009 November 7. doi:  10.1107/S1600536809045954
PMCID: PMC2972159

5,15-Bis(3,5-di-tert-butyl­phen­yl)-10,20-bis­(phenyl­ethyn­yl)porphyrin

Abstract

In the centrosymmetric title compound, C64H62N4, the two phenyl­ethynyl groups lie at diagonal meso positions. The 24-membered porphyrin has in-plane distortion with respect to the mean plane of the macrocycle and two intra-ring bifurcated N—H(...)(N,N) hydrogen bonds occur. The dihedral angles between the phenyl rings in the phenyl­ethynyl group and the 3,5-bis­(tert-but­yl)phenyl group with respect to the mean plane of the porphyrin are 17.2 (2) and 59.2 (3)°. The tert-butyl groups are disordered over two sets of sites in a 0.661 (13):0.339 (13) ratio.

Related literature

For background to porphyrin structures and electronic properties, see: Anderson et al. (1994 [triangle], 1998 [triangle]); Fujita et al. (1995 [triangle]); Henari et al. (1997 [triangle]); Huuskonen et al. (1998 [triangle]); LeCours et al. (1996 [triangle]); Screen et al. (2002 [triangle]); Seo et al. (2008 [triangle]); Silvers & Tulinsky (1967 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3004-scheme1.jpg

Experimental

Crystal data

  • C64H62N4
  • M r = 887.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3004-efi1.jpg
  • a = 9.9598 (19) Å
  • b = 10.496 (2) Å
  • c = 13.925 (3) Å
  • α = 86.236 (4)°
  • β = 80.266 (4)°
  • γ = 82.765 (4)°
  • V = 1421.8 (5) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.06 mm−1
  • T = 213 K
  • 0.45 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.974, T max = 0.997
  • 6144 measured reflections
  • 4136 independent reflections
  • 2068 reflections with I > 2σ(I)
  • R int = 0.101
  • θmax = 23.5°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.107
  • wR(F 2) = 0.315
  • S = 0.99
  • 4136 reflections
  • 363 parameters
  • 193 restraints
  • H-atom parameters constrained
  • Δρmax = 1.13 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045954/hb5134sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045954/hb5134Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Ministry of Education, Science Technology (MEST) and the Korean Institute for the Advancement of Technology (KIAT) through the Human Resource Training Project for Regional Innovation. We also acknowledge the New University for Regional Innovation funded by the Ministry of Education, Science Technology (MEST) for support. We thank Dr Hyunuk Kim for the data collection.

supplementary crystallographic information

Comment

The electronic and steric tunnings through surrogating various substituents on the meso- and beta-carbons play crucial role in the synthesis of diverse porphyrin systems. In this respect, meso-ethynyl porphyrins have attracted the attention due to their wide utilization for the development of conjugated electronic (LeCours et al., 1996; Anderson et al., 1994; Henari et al., 1997; Screen et al., 2002) and light harvesting materials. As an extension of our research on the conjugated photoelectronic materials (Seo et al., 2008), the title compound (I) was prepared and its crystal structure determined.

The molecular structure of C64H62N4 (I) is shown in Figure 1. The structure shows symmetric molecular system due to presence of inversion center (Ci) in the core of porphyrin macrocycle. On assuming all four nitrogen atoms of all pyrolic groups in a plane, it was observed that the meso-carbons were deviated with ± 0.072 Å from the least-squares plane and find analogy with earlier reported compound 5,15-bis(3,5-di-tert-butylphenyl) -10,20-bis(trimethylsilylethynyl)porphyrin (Huuskonen et al., 1998). The structural analysis of the porphyrin macrocycle reveals that the plane of phenyl rings in the phenylethynyl groups is slightly twisted with the dihedral angle of 17.17° with respect to the least-squares plane of the porphyrin, in contrast the plane of aryl rings associated with 3,5-bis(tert-butyl)phenyl groups (59.19°) (Figure 2). The dihedral angle associated with phenylethynyl groups (17.17°) is also much smaller with respect to phenyl planes slanting (61–63°) in tetraphenylporphyrin (Silvers et al., 1967). The comparison of this result with the tetraphenylporphyrin, it was observed that on increasing the conjugation with phenyl groups leads to release of steric strain. The distances between the nitrogen atoms (N1—N2 = 2.972, N1—N2' = 2.891, N1—N1' = 4.167, N2—N2' = 4.126 Å) involve in the formation of basal parallelogram based core along with the C—C (triple bond) (1.165 Å) bond lengths and C(meso)-C(alpha)-C(beta) angles (178.07°) involving ethynyl groups show the analogy with previous reports (Fujita et al., 1995; Huuskonen et al., 1998). In addition, the distances involving the diagonal meso-carbon atoms (C5—C5' = 6.815, C10—C10' = 6.994 Å) also differ to each other and correlate with the previous work (Huuskonen et al., 1998). The shortest intermolecular distances for the pi-pi and pi-H interactions are not observed less than 6.085 and 3.84 Å, respectively and imply the steric strain between aryl groups of adjacent porphyrin prevent the strong interactions in between adjacent molecular system (Anderson et al., 1998).

Experimental

The title compound was prepared from the corresponding dipyrromethane and phenylpropargyl aldehyde as follows. BF3.OEt2 (25 ML, 0.2 mmol) was added to a solution of meso-(3,5-di-tert-butylphenyl) dipyrromethane (0.669 g, 2.0 mmol) and phenylpropargyl aldehyde (245 ML, 2.0 mmol) in dry CH2Cl2 (200 ml). The reaction mixture was stirred for 10 min at room temperature.

2,3-Dichloro-5,6-dicyano-p-benzoquinone (340 mg, 0.15 mmol) was added and further stirred for 30 min. After evaporation of solvent to dryness, the title compound was separated by column chromatography (SiO2, CH2Cl2:n-hexane = 1:4). Recrystallization from a CH2Cl2/CH3CN solution afforded purple crystalline solid. Yield: 124 mg (14%). 1H NMR (200 MHz, CDCl3): Δ 9.70 (d, 4H), 8.89 (d, 4H), 8.06 (s, 4H), 8.00 (t, 2H), 7.82 (s, 2H), 1.55 (s, 36H), -1.92 (br, 2H). UV-vis (CH2Cl2): Λmax (log E) 443 (6.04), 554 (4.38), 594(4.92), 623 (4.25), 681 (4.61) nm.

Purple needles of (I) were grown by slow diffusion of CH3CN to a CH2Cl2 solution of the title compound.

Refinement

The carbon atoms C26—C28 and C30—C32 and their attached H atoms are disordered over two sets of sites in a 66.1:33.1 ratio with total site occupancy of 1.00 for each one of them. The contributions of the mostly disordered solvent molecules were removed from the diffraction data using the SQUEEZE routine of PLATON software (Spek, 2009), and then final refinements were carried out. All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in their geometrically ideal positions.

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability displacement ellipsoids. Hydrogen atoms (except to N—H) have been omitted for the clarity.
Fig. 2.
A view of molecular structure of (I) showing the tilted planes of the different aryl groups.

Crystal data

C64H62N4Z = 1
Mr = 887.18F(000) = 474
Triclinic, P1Dx = 1.036 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9598 (19) ÅCell parameters from 4136 reflections
b = 10.496 (2) Åθ = 2.0–23.5°
c = 13.925 (3) ŵ = 0.06 mm1
α = 86.236 (4)°T = 213 K
β = 80.266 (4)°Needle, purple
γ = 82.765 (4)°0.45 × 0.10 × 0.05 mm
V = 1421.8 (5) Å3

Data collection

Bruker SMART CCD diffractometer4136 independent reflections
Radiation source: fine-focus sealed tube2068 reflections with I > 2σ(I)
graphiteRint = 0.101
ω scansθmax = 23.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −8→11
Tmin = 0.974, Tmax = 0.997k = −11→11
6144 measured reflectionsl = −11→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.107Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.315H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.1906P)2] where P = (Fo2 + 2Fc2)/3
4136 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 1.13 e Å3
193 restraintsΔρmin = −0.30 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.4997 (4)0.8413 (3)0.5981 (3)0.0445 (11)
H1A0.49400.91160.56160.053*
N20.3805 (4)0.9196 (3)0.4184 (3)0.0481 (11)
C10.5695 (5)0.8204 (4)0.6753 (3)0.0429 (13)
C20.5537 (6)0.6929 (5)0.7151 (4)0.0529 (14)
H20.59070.65300.76890.063*
C30.4771 (6)0.6413 (5)0.6622 (4)0.0600 (16)
H30.45110.55780.67180.072*
C40.4409 (5)0.7342 (4)0.5880 (4)0.0449 (13)
C50.3646 (5)0.7155 (4)0.5160 (4)0.0482 (13)
C60.3377 (5)0.8019 (5)0.4380 (4)0.0468 (13)
C70.2576 (6)0.7764 (5)0.3646 (4)0.0577 (15)
H70.21540.70200.36080.069*
C80.2563 (6)0.8818 (5)0.3030 (4)0.0564 (15)
H80.21370.89290.24720.068*
C90.3299 (5)0.9725 (4)0.3367 (3)0.0409 (12)
C100.3527 (5)1.0946 (5)0.2919 (3)0.0470 (13)
C110.3101 (6)0.5928 (5)0.5201 (4)0.0557 (14)
C120.2674 (6)0.4937 (5)0.5260 (4)0.0606 (16)
C130.2183 (6)0.3674 (5)0.5331 (4)0.0584 (15)
C140.2721 (6)0.2699 (5)0.5915 (4)0.0605 (15)
H140.34100.28490.62650.073*
C150.1152 (6)0.3433 (5)0.4811 (4)0.0626 (16)
H150.07810.40720.43930.075*
C160.2265 (7)0.1512 (5)0.5990 (5)0.0712 (18)
H160.26550.08500.63810.085*
C170.0704 (7)0.2243 (6)0.4930 (4)0.0760 (19)
H17−0.00070.20830.46050.091*
C180.1249 (8)0.1287 (6)0.5501 (5)0.0757 (19)
H180.09290.04750.55580.091*
C190.2853 (6)1.1365 (5)0.2057 (4)0.0511 (14)
C200.1439 (6)1.1470 (5)0.2137 (4)0.0636 (16)
H200.09141.12830.27450.076*
C210.3627 (6)1.1657 (4)0.1160 (4)0.0541 (14)
H210.45861.15960.11040.065*
C220.0761 (6)1.1849 (6)0.1337 (4)0.0704 (17)
C230.3015 (6)1.2037 (5)0.0341 (4)0.0612 (15)
C240.1597 (6)1.2114 (6)0.0466 (4)0.0714 (18)
H240.11721.2366−0.00810.086*
C25−0.0782 (7)1.2010 (8)0.1463 (5)0.090 (2)
C26A−0.1491 (10)1.1396 (11)0.2354 (9)0.077 (3)0.661 (13)
H26A−0.10291.05410.24590.115*0.661 (13)
H26B−0.24331.13370.22830.115*0.661 (13)
H26C−0.14791.19070.29080.115*0.661 (13)
C27A−0.1397 (14)1.3240 (12)0.1232 (13)0.118 (5)0.661 (13)
H27A−0.23851.32400.13240.178*0.661 (13)
H27B−0.10631.34810.05580.178*0.661 (13)
H27C−0.11711.38520.16550.178*0.661 (13)
C28A−0.1218 (15)1.1113 (16)0.0638 (12)0.147 (6)0.661 (13)
H28A−0.08451.02250.07390.221*0.661 (13)
H28B−0.08521.1424−0.00130.221*0.661 (13)
H28C−0.22091.11720.07110.221*0.661 (13)
C26B−0.125 (4)1.110 (3)0.176 (3)0.156 (15)0.339 (13)
H26D−0.22351.12460.17890.234*0.339 (13)
H26E−0.10411.08890.24160.234*0.339 (13)
H26F−0.08671.04000.13440.234*0.339 (13)
C27B−0.121 (3)1.3362 (18)0.2041 (19)0.109 (9)0.339 (13)
H27D−0.07531.40430.16680.164*0.339 (13)
H27E−0.09331.32490.26790.164*0.339 (13)
H27F−0.21951.35900.21150.164*0.339 (13)
C28B−0.117 (3)1.263 (3)0.048 (2)0.153 (12)0.339 (13)
H28D−0.05261.32270.02030.229*0.339 (13)
H28E−0.20911.30880.05980.229*0.339 (13)
H28F−0.11471.19620.00250.229*0.339 (13)
C290.3836 (7)1.2398 (6)−0.0623 (4)0.0763 (18)
C30A0.495 (6)1.131 (5)−0.084 (4)0.094 (9)0.121 (8)
H30A0.50501.0805−0.02430.141*0.121 (8)
H30B0.58011.1652−0.11020.141*0.121 (8)
H30C0.47091.0776−0.13110.141*0.121 (8)
C31A0.294 (5)1.274 (6)−0.138 (4)0.089 (10)0.121 (8)
H31A0.35091.2927−0.20010.134*0.121 (8)
H31B0.22991.3483−0.11930.134*0.121 (8)
H31C0.24461.2018−0.14460.134*0.121 (8)
C32A0.445 (7)1.358 (5)−0.035 (5)0.110 (10)0.121 (8)
H32A0.51691.32990.00390.165*0.121 (8)
H32B0.37401.41500.00260.165*0.121 (8)
H32C0.48411.4041−0.09380.165*0.121 (8)
C30B0.3606 (9)1.1477 (8)−0.1410 (5)0.092 (3)0.879 (8)
H30D0.41341.1703−0.20350.138*0.879 (8)
H30E0.26401.1563−0.14630.138*0.879 (8)
H30F0.39031.0595−0.12170.138*0.879 (8)
C31B0.3428 (10)1.3783 (8)−0.0936 (6)0.109 (3)0.879 (8)
H31D0.39791.3990−0.15570.163*0.879 (8)
H31E0.35791.4346−0.04490.163*0.879 (8)
H31F0.24661.3899−0.10030.163*0.879 (8)
C32B0.5416 (8)1.2160 (9)−0.0616 (5)0.086 (2)0.879 (8)
H32D0.59021.2415−0.12490.130*0.879 (8)
H32E0.56801.1255−0.04750.130*0.879 (8)
H32F0.56451.2664−0.01200.130*0.879 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.048 (3)0.031 (2)0.050 (3)−0.0016 (18)−0.004 (2)0.0123 (18)
N20.053 (3)0.039 (2)0.050 (3)−0.0027 (19)−0.002 (2)0.0033 (19)
C10.043 (3)0.033 (3)0.046 (3)0.006 (2)−0.001 (2)0.012 (2)
C20.057 (4)0.043 (3)0.059 (3)−0.008 (3)−0.014 (3)0.014 (3)
C30.058 (4)0.047 (3)0.071 (4)−0.009 (3)−0.006 (3)0.026 (3)
C40.050 (3)0.032 (3)0.048 (3)−0.005 (2)0.005 (3)0.006 (2)
C50.049 (3)0.041 (3)0.051 (3)−0.007 (2)−0.002 (3)0.006 (2)
C60.035 (3)0.050 (3)0.051 (3)−0.001 (2)0.001 (2)−0.002 (2)
C70.061 (4)0.055 (3)0.059 (4)−0.021 (3)−0.006 (3)0.004 (3)
C80.061 (4)0.066 (4)0.043 (3)−0.014 (3)−0.006 (3)0.000 (3)
C90.035 (3)0.039 (3)0.046 (3)0.000 (2)−0.004 (2)0.001 (2)
C100.043 (3)0.050 (3)0.043 (3)0.003 (2)0.000 (2)−0.001 (2)
C110.059 (4)0.046 (3)0.060 (4)−0.014 (3)−0.004 (3)0.011 (3)
C120.071 (4)0.046 (3)0.062 (4)−0.012 (3)−0.001 (3)0.008 (3)
C130.056 (4)0.043 (3)0.071 (4)−0.009 (3)0.007 (3)−0.008 (3)
C140.055 (4)0.049 (3)0.075 (4)−0.007 (3)−0.004 (3)−0.001 (3)
C150.071 (4)0.054 (3)0.059 (4)−0.006 (3)−0.004 (3)0.000 (3)
C160.065 (4)0.044 (3)0.093 (5)0.001 (3)0.009 (4)0.011 (3)
C170.090 (5)0.084 (5)0.058 (4)−0.038 (4)0.000 (3)−0.014 (3)
C180.080 (5)0.055 (4)0.085 (5)−0.020 (3)0.016 (4)−0.008 (4)
C190.053 (4)0.052 (3)0.046 (3)0.003 (3)−0.008 (3)−0.005 (2)
C200.049 (4)0.076 (4)0.057 (4)0.011 (3)0.004 (3)−0.001 (3)
C210.054 (4)0.053 (3)0.049 (3)0.007 (3)−0.002 (3)−0.003 (2)
C220.057 (4)0.086 (4)0.061 (4)0.020 (3)−0.010 (3)0.000 (3)
C230.062 (4)0.062 (3)0.057 (4)0.011 (3)−0.018 (3)0.004 (3)
C240.063 (5)0.095 (4)0.050 (4)0.024 (3)−0.015 (3)0.000 (3)
C250.054 (5)0.121 (6)0.086 (5)0.029 (4)−0.020 (4)0.009 (4)
C26A0.038 (5)0.093 (6)0.096 (7)−0.002 (4)−0.014 (5)0.018 (5)
C27A0.097 (8)0.117 (8)0.135 (9)0.002 (6)−0.020 (7)0.011 (7)
C28A0.109 (9)0.171 (10)0.167 (10)−0.024 (7)−0.031 (7)−0.014 (8)
C26B0.149 (17)0.162 (17)0.157 (17)−0.013 (10)−0.031 (10)0.002 (10)
C27B0.099 (11)0.111 (11)0.114 (12)−0.006 (8)−0.015 (9)0.000 (9)
C28B0.147 (15)0.165 (15)0.148 (14)−0.006 (9)−0.037 (9)−0.006 (9)
C290.081 (4)0.089 (4)0.048 (3)0.016 (3)−0.002 (3)0.004 (3)
C30A0.089 (12)0.096 (11)0.092 (13)0.003 (8)−0.010 (9)0.002 (9)
C31A0.087 (12)0.095 (14)0.085 (12)−0.007 (8)−0.015 (9)0.005 (9)
C32A0.112 (15)0.112 (12)0.106 (15)−0.011 (9)−0.021 (10)−0.012 (10)
C30B0.083 (5)0.133 (6)0.052 (4)0.007 (4)0.000 (3)−0.010 (4)
C31B0.114 (6)0.108 (5)0.089 (5)−0.002 (4)0.002 (5)0.039 (4)
C32B0.083 (5)0.122 (6)0.045 (4)0.001 (4)0.003 (3)0.009 (4)

Geometric parameters (Å, °)

N1—C41.357 (6)C29—C30A1.49 (4)
N1—C11.367 (6)C29—C31A1.49 (4)
N2—C61.354 (6)C29—C31B1.515 (9)
N2—C91.378 (6)C29—C30B1.570 (10)
C1—C10i1.397 (7)C29—C32B1.563 (10)
C1—C21.431 (6)C29—C32A1.55 (5)
C2—C31.329 (7)N1—H1A0.869 (3)
C3—C41.433 (7)C2—H20.941 (6)
C4—C51.393 (7)C3—H30.940 (5)
C5—C61.407 (7)C8—H80.940 (6)
C5—C111.454 (7)C14—H140.940 (6)
C6—C71.455 (7)C15—H150.940 (5)
C7—C81.355 (7)C16—H160.940 (6)
C8—C91.420 (7)C17—H170.940 (7)
C9—C101.415 (6)C18—H180.941 (7)
C10—C1i1.397 (7)C20—H200.940 (5)
C10—C191.488 (7)C21—H210.939 (6)
C11—C121.164 (7)C24—H240.940 (6)
C12—C131.462 (7)C26A—H26A0.97 (1)
C13—C141.377 (8)C26A—H26B0.97 (1)
C13—C151.409 (8)C26A—H26C0.97 (1)
C14—C161.371 (7)C27A—H27A0.97 (1)
C15—C171.369 (8)C27A—H27B0.97 (2)
C16—C181.364 (9)C27A—H27C0.97 (2)
C17—C181.355 (9)C28A—H28A0.97 (2)
C19—C201.385 (7)C28A—H28B0.97 (2)
C19—C211.390 (7)C28A—H28C0.97 (1)
C20—C221.408 (8)C30A—H30A0.97 (5)
C21—C231.395 (7)C30A—H30B0.97 (6)
C22—C241.383 (8)C30A—H30C0.97 (6)
C22—C251.506 (9)C31A—H31A0.97 (5)
C23—C241.386 (8)C31A—H31B0.96 (5)
C23—C291.502 (8)C31A—H31C0.97 (6)
C25—C26B1.14 (3)C32A—H32A0.97 (7)
C25—C27A1.400 (13)C32A—H32B0.97 (6)
C25—C26A1.473 (12)C32A—H32C0.97 (6)
C25—C28B1.57 (3)N1—H1A0.869 (3)
C25—C27B1.651 (16)C2—H20.941 (6)
C25—C28A1.676 (16)
C4—N1—C1108.7 (4)C28B—C25—C28A59.0 (12)
C6—N2—C9107.9 (4)C27B—C25—C28A143.9 (12)
N1—C1—C10i126.7 (4)C30A—C29—C31A116 (3)
N1—C1—C2107.9 (5)C30A—C29—C23106 (2)
C10i—C1—C2125.4 (5)C31A—C29—C23112 (2)
C3—C2—C1107.4 (5)C30A—C29—C31B142 (2)
C2—C3—C4108.6 (5)C31A—C29—C31B58 (2)
N1—C4—C5126.4 (4)C23—C29—C31B111.3 (5)
N1—C4—C3107.4 (5)C30A—C29—C30B65 (2)
C5—C4—C3126.1 (5)C31A—C29—C30B54 (2)
C4—C5—C6126.8 (4)C23—C29—C30B109.0 (6)
C4—C5—C11116.8 (4)C31B—C29—C30B110.0 (6)
C6—C5—C11116.4 (5)C30A—C29—C32B44 (2)
N2—C6—C5126.7 (5)C31A—C29—C32B136 (2)
N2—C6—C7109.1 (4)C23—C29—C32B112.4 (5)
C5—C6—C7124.2 (5)C31B—C29—C32B110.1 (7)
C8—C7—C6105.9 (5)C30B—C29—C32B103.9 (6)
C7—C8—C9108.7 (5)C30A—C29—C32A110 (3)
N2—C9—C8108.4 (4)C31A—C29—C32A112 (3)
N2—C9—C10125.5 (5)C23—C29—C32A101 (2)
C8—C9—C10126.0 (5)C31B—C29—C32A54 (2)
C1i—C10—C9124.6 (5)C30B—C29—C32A150 (2)
C1i—C10—C19117.9 (4)C32B—C29—C32A66 (2)
C9—C10—C19117.4 (5)C25—C26A—H26A110 (1)
C12—C11—C5178.0 (6)C25—C26A—H26B109 (1)
C11—C12—C13178.2 (6)C25—C26A—H26C109 (1)
C14—C13—C15118.9 (5)H26A—C26A—H26B109 (1)
C14—C13—C12120.2 (6)H26A—C26A—H26C109 (1)
C15—C13—C12120.9 (5)H26B—C26A—H26C109 (1)
C16—C14—C13120.7 (6)C25—C27A—H27A109 (1)
C17—C15—C13118.2 (6)C25—C27A—H27B110 (1)
C18—C16—C14120.3 (6)C25—C27A—H27C109 (1)
C18—C17—C15122.4 (7)H27A—C27A—H27B109 (1)
C17—C18—C16119.4 (6)H27A—C27A—H27C109 (1)
C20—C19—C21118.9 (5)H27B—C27A—H27C109 (1)
C20—C19—C10120.3 (5)C25—C28A—H28A109 (1)
C21—C19—C10120.8 (5)C25—C28A—H28B109 (1)
C19—C20—C22122.2 (5)C25—C28A—H28C109 (1)
C23—C21—C19121.6 (5)H28A—C28A—H28B109 (2)
C24—C22—C20115.8 (6)H28A—C28A—H28C110 (2)
C24—C22—C25123.6 (6)H28B—C28A—H28C109 (2)
C20—C22—C25120.6 (5)C23—C29—C30A106 (2)
C24—C23—C21116.7 (5)C23—C29—C31A111 (2)
C24—C23—C29121.1 (5)C23—C29—C32A101 (2)
C21—C23—C29122.1 (6)C30A—C29—C31A116 (3)
C22—C24—C23124.8 (6)C30A—C29—C32A110 (3)
C26B—C25—C27A131 (2)C31A—C29—C32A112 (3)
C26B—C25—C26A36.7 (19)C29—C30A—H30A109 (5)
C27A—C25—C26A113.9 (9)C29—C30A—H30B109 (5)
C26B—C25—C22113 (2)C29—C30A—H30C109 (5)
C27A—C25—C22115.8 (9)H30A—C30A—H30B110 (5)
C26A—C25—C22115.9 (6)H30A—C30A—H30C110 (5)
C26B—C25—C28B117 (2)H30B—C30A—H30C110 (5)
C27A—C25—C28B48.9 (12)C29—C31A—H31A109 (5)
C26A—C25—C28B136.7 (14)C29—C31A—H31B110 (5)
C22—C25—C28B106.5 (13)C29—C31A—H31C109 (5)
C26B—C25—C27B120 (2)H31A—C31A—H31B110 (5)
C27A—C25—C27B45.0 (9)H31A—C31A—H31C109 (5)
C26A—C25—C27B85.5 (11)H31B—C31A—H31C110 (5)
C22—C25—C27B102.9 (11)C29—C32A—H32A110 (5)
C28B—C25—C27B93.6 (14)C29—C32A—H32B110 (5)
C26B—C25—C28A64 (2)C29—C32A—H32C110 (5)
C27A—C25—C28A102.6 (10)H32A—C32A—H32B109 (6)
C26A—C25—C28A98.7 (9)H32A—C32A—H32C109 (6)
C22—C25—C28A107.1 (7)H32B—C32A—H32C109 (6)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.872.442.972 (6)120
N1—H1A···N2i0.872.352.891 (5)121

Symmetry codes: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5134).

References

  • Anderson, H. L., Martin, S. J. & Bradley, D. D. C. (1994). Angew. Chem. Int. Ed. Engl. 33, 655–657.
  • Anderson, H. L., Wylie, A. P. & Prout, K. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1607–1611.
  • Bruker (2003). SMART, SAINT,and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fujita, T., Uekusa, H., Ohkubo, A., Shimura, T., Aramaki, K., Nishihara, H. & Ohba, S. (1995). Acta Cryst. C51, 2265–2269.
  • Henari, F. Z., Blau, W. J., Milgrom, L. R., Yahioglu, G., Phillips, D. & Lacey, J. A. (1997). Chem. Phys. Lett. 267, 229–233.
  • Huuskonen, S.-P. J., Wilson, G. S. & Anderson, H. L. (1998). Acta Cryst. C54, 662–664.
  • LeCours, S. M., DiMagno, S. G. & Therien, M. J. (1996). J. Am. Chem. Soc. 118, 11854–11864.
  • Screen, T. E. O., Thorne, J. R. G., Denning, R. G., Bucknall, D. G. & Anderson, H. L. (2002). J. Am. Chem. Soc. 124, 9712–9713. [PubMed]
  • Seo, J.-W., Jang, S. Y., Kim, D. & Kim, H.-J. (2008). Tetrahedron, 64, 2733–2739.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331–3337. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography