PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3107.
Published online 2009 November 18. doi:  10.1107/S160053680904762X
PMCID: PMC2972150

A second monoclinic polymorph of N-cyclo­hexyl-N-ethyl­benzene­sulfonamide

Abstract

The crystal structure of the title compound, C14H21NO2S, is a polymorph of the structure reported by Khan et al. [Acta Cryst. (2009), E65, o2867] which is also monoclinic (space group P21/c). The unit cell in the title structure is approximately half the volume of the previously reported polymorph and the asymmetric unit of the title compound contains one mol­ecule rather than two independent mol­ecules in the other polymorph. In the title mol­ecule, the cyclo­hexane ring is in the typical chair form. In the crystal structure, mol­ecules are linked via weak inter­molecular C—H(...)O inter­actions, forming a chain along the b-axis direction.

Related literature

For the synthesis of related mol­ecules, see: Arshad et al. (2009 [triangle]); Zia-ur-Rehman et al. (2009 [triangle]). For applications of sulfonamides, see: Connor (1998 [triangle]); Berredjem et al. (2000 [triangle]); Lee & Lee (2002 [triangle]); Xiao & Timberlake (2000 [triangle]). For the structure of the other polymorph, see: Khan et al. (2009 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3107-scheme1.jpg

Experimental

Crystal data

  • C14H21NO2S
  • M r = 267.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3107-efi1.jpg
  • a = 8.3837 (4) Å
  • b = 11.4467 (5) Å
  • c = 15.1488 (7) Å
  • β = 92.541 (2)°
  • V = 1452.34 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 296 K
  • 0.41 × 0.28 × 0.11 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.916, T max = 0.976
  • 15910 measured reflections
  • 3651 independent reflections
  • 2481 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.107
  • S = 1.02
  • 3651 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia,1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904762X/lh2950sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904762X/lh2950Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

Sulfonamides are an important category of pharmaceutical compounds with a broad spectrum of biological activities such as herbicidal, anti-malarial, anti-convulsant and anti-hypertensive (Connor, 1998; Xiao & Timberlake, 2000; Berredjem et al., 2000; Lee & Lee, 2002).

As a part of our ongoing research program regarding the synthesis of sulfur containing heterocyclic compounds (Arshad et al., 2009; Zia-ur-Rehman et al. 2009), we, herein report the crystal structure of the title compound as a new polymorph of the structure previously reported by Khan et al. (2009) which is also monoclinic (space group P21/c), but with completely different unit cell constants. The molecular structure of the title compound (I) is shown in Fig. 1. The asymmetric unit contains single molecule instead of two as observed in the previous form. In the molecule of (I), bond lengths (Allen et al., 1987) and bond angles are within the normal ranges. The cyclohexane ring is in the chair form. In the crystal structure, molecule are linked via weak intermolecular C—H···O hydrogen bonds to form chains along the b axis direction.

Experimental

A mixture of N-cyclohexylbenzene sulfonamide (1.0 g, 0.43 mmol), sodium hydride (0.21 g; 0.88 mmoles) and N, N-dimethylformamide (10.0 ml) was stirred at room temperature for half an hour followed by addition of ethyl iodide (0.134 g; 0.86 mmoles). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from methanol.

Refinement

All hydrogen atoms were identified in a difference Fourier map. However, they were fixed in ideal positions and treated as riding on their parent atoms. The following distances were used: Cmethyl = —H 0.98 Å. Caromatic—H 0.95 Å. U(H) was set to 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
Fig. 2.
Part of the crystal structure showing weak C-H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C14H21NO2SF(000) = 576
Mr = 267.38Dx = 1.223 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4610 reflections
a = 8.3837 (4) Åθ = 2.8–27.6°
b = 11.4467 (5) ŵ = 0.22 mm1
c = 15.1488 (7) ÅT = 296 K
β = 92.541 (2)°Needle, colourless
V = 1452.34 (12) Å30.41 × 0.28 × 0.11 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3651 independent reflections
Radiation source: fine-focus sealed tube2481 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)h = −11→10
Tmin = 0.916, Tmax = 0.976k = −15→14
15910 measured reflectionsl = −19→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0409P)2 + 0.3342P] where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.22296 (5)0.78592 (4)0.73395 (3)0.04988 (15)
O10.14310 (16)0.68075 (13)0.70635 (9)0.0702 (4)
O20.14198 (15)0.89484 (12)0.72376 (10)0.0720 (4)
N10.38527 (16)0.79318 (12)0.68134 (9)0.0455 (3)
C10.27998 (18)0.77256 (14)0.84693 (10)0.0427 (4)
C20.2929 (3)0.87099 (18)0.89914 (13)0.0658 (5)
H20.26410.94360.87600.079*
C30.3483 (3)0.8612 (2)0.98515 (15)0.0841 (7)
H30.35690.92761.02050.101*
C40.3908 (3)0.7554 (3)1.01939 (14)0.0809 (7)
H40.42960.74971.07770.097*
C50.3767 (2)0.6566 (2)0.96771 (14)0.0710 (6)
H50.40480.58430.99160.085*
C60.3209 (2)0.66398 (16)0.88051 (12)0.0528 (4)
H60.31130.59750.84540.063*
C70.49240 (18)0.89465 (14)0.69898 (10)0.0410 (4)
H70.43090.95300.73040.049*
C80.6390 (2)0.86509 (15)0.75812 (11)0.0507 (4)
H8A0.60550.83300.81360.061*
H8B0.70260.80650.72960.061*
C90.7397 (2)0.97408 (17)0.77604 (11)0.0579 (5)
H9A0.67861.03030.80850.069*
H9B0.83400.95360.81210.069*
C100.7892 (2)1.02824 (16)0.69050 (12)0.0547 (5)
H10A0.85780.97440.66050.066*
H10B0.84951.09900.70330.066*
C110.6449 (2)1.05710 (15)0.63070 (12)0.0550 (4)
H11A0.68031.08710.57500.066*
H11B0.58281.11770.65800.066*
C120.53986 (19)0.95047 (14)0.61323 (10)0.0457 (4)
H12A0.44460.97350.57890.055*
H12B0.59710.89390.57900.055*
C130.4471 (2)0.68754 (15)0.63861 (12)0.0542 (5)
H13A0.41810.61950.67260.065*
H13B0.56270.69160.63960.065*
C140.3849 (3)0.67214 (18)0.54449 (13)0.0760 (6)
H14A0.27040.66770.54290.114*
H14B0.42730.60140.52080.114*
H14C0.41720.73740.50980.114*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0385 (2)0.0606 (3)0.0500 (3)−0.0046 (2)−0.00434 (17)0.0147 (2)
O10.0615 (8)0.0877 (10)0.0603 (8)−0.0332 (7)−0.0110 (6)0.0087 (7)
O20.0469 (7)0.0815 (10)0.0880 (10)0.0182 (7)0.0050 (7)0.0353 (8)
N10.0459 (8)0.0483 (8)0.0421 (7)−0.0072 (6)0.0015 (6)0.0003 (6)
C10.0378 (8)0.0476 (9)0.0431 (9)−0.0015 (7)0.0050 (7)0.0043 (7)
C20.0839 (14)0.0548 (12)0.0599 (12)0.0012 (10)0.0160 (10)−0.0002 (9)
C30.1083 (19)0.0908 (18)0.0541 (13)−0.0248 (15)0.0138 (12)−0.0155 (12)
C40.0689 (14)0.131 (2)0.0427 (11)−0.0152 (14)−0.0031 (10)0.0049 (13)
C50.0665 (13)0.0872 (16)0.0594 (12)0.0133 (12)0.0045 (10)0.0285 (12)
C60.0543 (10)0.0529 (11)0.0513 (10)0.0005 (9)0.0064 (8)0.0090 (8)
C70.0408 (8)0.0433 (9)0.0387 (8)−0.0020 (7)0.0010 (6)0.0009 (7)
C80.0509 (10)0.0581 (11)0.0422 (9)−0.0051 (8)−0.0066 (7)0.0079 (8)
C90.0556 (11)0.0678 (13)0.0494 (10)−0.0100 (9)−0.0087 (8)−0.0030 (9)
C100.0516 (10)0.0528 (11)0.0599 (11)−0.0123 (8)0.0033 (8)−0.0052 (8)
C110.0592 (11)0.0480 (10)0.0580 (11)−0.0046 (8)0.0052 (9)0.0101 (8)
C120.0456 (9)0.0512 (10)0.0399 (9)−0.0009 (8)−0.0014 (7)0.0087 (7)
C130.0606 (11)0.0449 (10)0.0567 (11)−0.0022 (8)−0.0024 (9)0.0017 (8)
C140.1067 (18)0.0615 (13)0.0591 (12)−0.0003 (12)−0.0042 (12)−0.0115 (10)

Geometric parameters (Å, °)

S1—O21.4247 (13)C8—C91.524 (2)
S1—O11.4309 (14)C8—H8A0.9700
S1—N11.6093 (14)C8—H8B0.9700
S1—C11.7632 (16)C9—C101.511 (2)
N1—C131.476 (2)C9—H9A0.9700
N1—C71.485 (2)C9—H9B0.9700
C1—C21.378 (2)C10—C111.515 (2)
C1—C61.381 (2)C10—H10A0.9700
C2—C31.368 (3)C10—H10B0.9700
C2—H20.9300C11—C121.521 (2)
C3—C41.359 (3)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.377 (3)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.384 (3)C13—C141.507 (3)
C5—H50.9300C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C7—C121.516 (2)C14—H14A0.9600
C7—C81.527 (2)C14—H14B0.9600
C7—H70.9800C14—H14C0.9600
O2—S1—O1119.34 (9)H8A—C8—H8B108.1
O2—S1—N1108.08 (8)C10—C9—C8110.74 (14)
O1—S1—N1107.08 (8)C10—C9—H9A109.5
O2—S1—C1106.77 (9)C8—C9—H9A109.5
O1—S1—C1108.29 (8)C10—C9—H9B109.5
N1—S1—C1106.64 (7)C8—C9—H9B109.5
C13—N1—C7119.89 (13)H9A—C9—H9B108.1
C13—N1—S1119.71 (11)C9—C10—C11111.09 (15)
C7—N1—S1117.98 (11)C9—C10—H10A109.4
C2—C1—C6120.85 (16)C11—C10—H10A109.4
C2—C1—S1119.81 (14)C9—C10—H10B109.4
C6—C1—S1119.21 (13)C11—C10—H10B109.4
C3—C2—C1119.6 (2)H10A—C10—H10B108.0
C3—C2—H2120.2C10—C11—C12111.69 (14)
C1—C2—H2120.2C10—C11—H11A109.3
C4—C3—C2120.6 (2)C12—C11—H11A109.3
C4—C3—H3119.7C10—C11—H11B109.3
C2—C3—H3119.7C12—C11—H11B109.3
C3—C4—C5120.01 (19)H11A—C11—H11B107.9
C3—C4—H4120.0C7—C12—C11111.15 (13)
C5—C4—H4120.0C7—C12—H12A109.4
C4—C5—C6120.6 (2)C11—C12—H12A109.4
C4—C5—H5119.7C7—C12—H12B109.4
C6—C5—H5119.7C11—C12—H12B109.4
C1—C6—C5118.32 (18)H12A—C12—H12B108.0
C1—C6—H6120.8N1—C13—C14113.41 (15)
C5—C6—H6120.8N1—C13—H13A108.9
N1—C7—C12110.79 (12)C14—C13—H13A108.9
N1—C7—C8113.40 (13)N1—C13—H13B108.9
C12—C7—C8111.16 (13)C14—C13—H13B108.9
N1—C7—H7107.0H13A—C13—H13B107.7
C12—C7—H7107.0C13—C14—H14A109.5
C8—C7—H7107.0C13—C14—H14B109.5
C9—C8—C7110.38 (14)H14A—C14—H14B109.5
C9—C8—H8A109.6C13—C14—H14C109.5
C7—C8—H8A109.6H14A—C14—H14C109.5
C9—C8—H8B109.6H14B—C14—H14C109.5
C7—C8—H8B109.6
O2—S1—N1—C13−146.72 (13)C2—C1—C6—C5−0.6 (3)
O1—S1—N1—C13−16.96 (14)S1—C1—C6—C5175.29 (14)
C1—S1—N1—C1398.80 (13)C4—C5—C6—C1−0.1 (3)
O2—S1—N1—C750.94 (13)C13—N1—C7—C1266.92 (17)
O1—S1—N1—C7−179.30 (11)S1—N1—C7—C12−130.77 (12)
C1—S1—N1—C7−63.54 (13)C13—N1—C7—C8−58.89 (19)
O2—S1—C1—C2−21.71 (17)S1—N1—C7—C8103.43 (15)
O1—S1—C1—C2−151.40 (15)N1—C7—C8—C9−177.88 (13)
N1—S1—C1—C293.66 (16)C12—C7—C8—C956.52 (19)
O2—S1—C1—C6162.38 (13)C7—C8—C9—C10−57.4 (2)
O1—S1—C1—C632.69 (16)C8—C9—C10—C1156.9 (2)
N1—S1—C1—C6−82.25 (15)C9—C10—C11—C12−55.4 (2)
C6—C1—C2—C30.6 (3)N1—C7—C12—C11178.00 (13)
S1—C1—C2—C3−175.27 (16)C8—C7—C12—C11−54.96 (19)
C1—C2—C3—C40.1 (3)C10—C11—C12—C754.4 (2)
C2—C3—C4—C5−0.7 (4)C7—N1—C13—C14−107.93 (18)
C3—C4—C5—C60.7 (3)S1—N1—C13—C1490.06 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.583.482 (2)163

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2950).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o2596. [PMC free article] [PubMed]
  • Berredjem, M., Ré gainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem 165, 249–264.
  • Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Connor, E. E. (1998). Prim. Care Update Ob. Gyn. 5, 32–35.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867. [PMC free article] [PubMed]
  • Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem37, 773–777.
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography