PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1578.
Published online 2009 November 14. doi:  10.1107/S1600536809047321
PMCID: PMC2972147

Carbon­yl(N-nitroso-N-oxido-1-naphtylamine-κ2 O,O′)(triphenyl­phosphine-κP)rhodium(I) acetone solvate

Abstract

The title compound, [Rh(C10H7N2O2)(C18H15P)(CO)]·(CH3)2CO, is the second structural report of a metal complex formed with the O,O′-C10H7N2O2 (neocupferrate) ligand. In the crystal structure, the metal centre is surrounded by one carbonyl ligand, one triphenyl­phosphine ligand and the bidentate neocupferrate ligand, forming a distorted square-planar RhCO2P coordination set which is best illustrated by the small O—Rh—O bite angle of 77.74 (10)°. There are no classical hydrogen-bond inter­actions observed for this complex.

Related literature

For synthesis of similar Rh complexes and information on oxidative addition products, see: Basson et al. (1984 [triangle], 1986 [triangle]); Steyn et al. (1992 [triangle]); Smit et al. (1994 [triangle]); Roodt & Steyn (2000 [triangle]). For another structural report of a complex with the bidentate neocupferrate ligand, see: Tamaki & Okabe (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1578-scheme1.jpg

Experimental

Crystal data

  • [Rh(C10H7N2O2)(C18H15P)(CO)]·C3H6O
  • M r = 638.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1578-efi1.jpg
  • a = 9.709 (5) Å
  • b = 10.186 (5) Å
  • c = 15.393 (5) Å
  • α = 77.499 (5)°
  • β = 85.045 (5)°
  • γ = 70.279 (5)°
  • V = 1398.9 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 100 K
  • 0.21 × 0.21 × 0.08 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan SADABS (Bruker, 2004 [triangle]) T min = 0.763, T max = 0.847
  • 23989 measured reflections
  • 6710 independent reflections
  • 5377 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.157
  • S = 1.16
  • 6710 reflections
  • 363 parameters
  • H-atom parameters constrained
  • Δρmax = 1.75 e Å−3
  • Δρmin = −1.18 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047321/wm2279sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047321/wm2279Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The research fund of the University of the Free State and the NRF is gratefully acknowledged.

supplementary crystallographic information

Comment

The title compound (Figure 1) forms part of a series of rhodium complexes used in the kinetic studies of oxidative addition reactions (Basson et al., 1984, 1986; Steyn et al., 1992; Smit et al., 1994; Roodt & Steyn, 2000).

In the crystal structure, the Rh(I) metal centre is coordinated to one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, (C10H7N2O2) to form a distorted square planar complex best illustrated by the small O–Rh–O bite angle of 77.74 (10) °. The Rh–O2 bond length of 2.026 (3) Å is significantly smaller than the Rh–O3 bond length of 2.082 (2) Å and is indicative of the larger trans-influence of the PPh3 ligand as opposed to the carbonyl ligand. This is the second structural report involving the neocupferrate ligand (Tamaki & Okabe, 1998). There is no classical hydrogen interaction observed for this complex.

Experimental

A solution of [Rh2Cl2(CO)4] was prepared by refluxing a solution of hydrated RhCl3 in DMF for approximately 30 minutes. An equivalent amount of N-hydroxy-N-nitrosonaphtylamine (neocupf) was added to this solution to produce [Rh(neocupf)(CO)(PPh3)], which was isolated through precipitation with water. The title compound was obtained by leaving a 5 cm3 beaker containing a concentrated acetone solution of [Rh(neocupf)(CO)(PPh3)] uncovered at room temperature. Well shaped yellow crystals formed within 4 h.

Refinement

The methylene, aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene and aromatic protons and Uiso(H) = 1.5Ueq(C) for methyl protons, respectively. The highest residual electron density was located 0.99 Å from H4A and the deepest hole was 0.85 Å from Rh1.

Figures

Fig. 1.
View of the complex molecule of the title compound and of the solvent molecule. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Crystal data

[Rh(C10H7N2O2)(C18H15P)(CO)]·C3H6OZ = 2
Mr = 638.44F(000) = 652
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.709 (5) ÅCell parameters from 5578 reflections
b = 10.186 (5) Åθ = 2.1–28.1°
c = 15.393 (5) ŵ = 0.71 mm1
α = 77.499 (5)°T = 100 K
β = 85.045 (5)°Plate, yellow
γ = 70.279 (5)°0.21 × 0.21 × 0.08 mm
V = 1398.9 (11) Å3

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer6710 independent reflections
Radiation source: sealed tube5377 reflections with I > 2σ(I)
graphiteRint = 0.053
[var phi] and ω scansθmax = 28°, θmin = 1.4°
Absorption correction: multi-scan SADABS (Bruker, 2004)h = −11→12
Tmin = 0.763, Tmax = 0.847k = −13→13
23989 measured reflectionsl = −19→20

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047w = 1/[σ2(Fo2) + (0.0853P)2 + 0.0168P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max = 0.001
S = 1.16Δρmax = 1.75 e Å3
6710 reflectionsΔρmin = −1.18 e Å3
363 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6328 (4)0.0332 (4)0.3430 (2)0.0177 (8)
C21.0765 (4)0.7216 (5)0.1312 (3)0.0239 (9)
C31.1293 (5)0.8324 (5)0.1536 (3)0.0319 (10)
H3A1.07370.92450.12130.048*
H3B1.23090.81270.13740.048*
H3C1.1170.83080.21630.048*
C41.1869 (5)0.5745 (5)0.1384 (3)0.0377 (12)
H4A1.13840.5090.13240.057*
H4B1.23290.54530.19540.057*
H4C1.25970.57540.09220.057*
C110.6713 (4)0.2154 (4)0.1495 (2)0.0142 (7)
C120.7244 (4)0.0790 (4)0.1287 (2)0.0181 (8)
H120.79630.00680.16370.022*
C130.6713 (4)0.0515 (4)0.0572 (3)0.0203 (8)
H130.7079−0.0390.04390.024*
C140.5630 (4)0.1580 (4)0.0043 (2)0.0203 (8)
H140.52810.1394−0.04450.024*
C150.5083 (4)0.2912 (4)0.0251 (2)0.0206 (8)
H150.43470.3622−0.00930.025*
C160.5624 (4)0.3204 (4)0.0974 (2)0.0170 (8)
H160.5250.41090.11060.02*
C210.9422 (4)0.2162 (4)0.2069 (2)0.0165 (8)
C221.0527 (4)0.1445 (4)0.2703 (2)0.0162 (8)
H221.02770.11470.32920.019*
C231.2001 (4)0.1179 (4)0.2450 (3)0.0198 (8)
H231.27260.07120.28730.024*
C241.2381 (4)0.1601 (4)0.1585 (3)0.0205 (8)
H241.33620.14170.14220.025*
C251.1307 (5)0.2304 (4)0.0950 (3)0.0221 (9)
H251.15710.25920.03630.027*
C260.9827 (4)0.2581 (4)0.1189 (3)0.0204 (8)
H260.91120.30470.0760.024*
C310.6668 (4)0.4369 (4)0.2389 (2)0.0158 (8)
C320.7292 (4)0.5387 (4)0.1976 (2)0.0171 (8)
H320.81990.51110.16920.021*
C330.6579 (4)0.6807 (4)0.1984 (3)0.0198 (8)
H330.70110.74820.1710.024*
C340.5219 (5)0.7233 (4)0.2398 (3)0.0215 (9)
H340.47330.81930.23950.026*
C350.4598 (4)0.6231 (4)0.2813 (2)0.0198 (8)
H350.36870.65110.30910.024*
C360.5321 (4)0.4806 (4)0.2818 (2)0.0186 (8)
H360.49010.41310.31110.022*
C410.8788 (4)0.3118 (4)0.5592 (2)0.0150 (8)
C421.0024 (4)0.2448 (4)0.6094 (2)0.0184 (8)
H421.0470.14680.61710.022*
C431.0612 (4)0.3262 (4)0.6493 (2)0.0215 (9)
H431.14610.28240.68250.026*
C440.9926 (4)0.4700 (4)0.6387 (2)0.0206 (8)
H441.03190.52290.66520.025*
C450.8626 (4)0.5407 (4)0.5882 (2)0.0172 (8)
C460.8031 (4)0.4598 (4)0.5459 (2)0.0143 (7)
C470.6743 (4)0.5309 (4)0.4946 (2)0.0165 (8)
H470.63550.47960.46640.02*
C480.6073 (4)0.6744 (4)0.4867 (3)0.0202 (8)
H480.52240.71970.45370.024*
C490.6656 (4)0.7544 (4)0.5281 (3)0.0211 (9)
H490.61890.8520.52210.025*
C500.7902 (4)0.6894 (4)0.5769 (2)0.0192 (8)
H500.82810.74370.60320.023*
N10.8228 (3)0.2270 (3)0.51666 (19)0.0141 (6)
N70.7762 (3)0.1307 (3)0.5647 (2)0.0165 (7)
O10.5680 (3)−0.0262 (3)0.31778 (19)0.0293 (7)
O20.8240 (3)0.2552 (3)0.42710 (16)0.0162 (6)
O30.7281 (3)0.0595 (3)0.51892 (16)0.0172 (6)
O40.9494 (3)0.7466 (3)0.1110 (2)0.0331 (7)
P10.75192 (10)0.24553 (10)0.24302 (6)0.0132 (2)
Rh10.72947 (3)0.13381 (3)0.381902 (17)0.01389 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0155 (19)0.015 (2)0.0185 (19)−0.0022 (16)0.0009 (15)0.0012 (15)
C20.019 (2)0.031 (2)0.019 (2)−0.0048 (18)0.0013 (16)−0.0045 (17)
C30.028 (2)0.032 (3)0.034 (2)−0.010 (2)0.0047 (19)−0.004 (2)
C40.028 (3)0.029 (3)0.056 (3)−0.001 (2)−0.007 (2)−0.018 (2)
C110.0118 (17)0.017 (2)0.0139 (17)−0.0053 (15)0.0017 (14)−0.0026 (14)
C120.0152 (19)0.016 (2)0.0204 (19)−0.0018 (16)−0.0023 (15)−0.0032 (15)
C130.024 (2)0.017 (2)0.021 (2)−0.0059 (17)0.0032 (16)−0.0079 (16)
C140.022 (2)0.027 (2)0.0160 (18)−0.0123 (18)−0.0006 (15)−0.0065 (16)
C150.019 (2)0.025 (2)0.0168 (19)−0.0090 (17)−0.0019 (15)0.0012 (16)
C160.0164 (19)0.015 (2)0.0202 (19)−0.0058 (16)−0.0027 (15)−0.0035 (15)
C210.0148 (18)0.0135 (19)0.0211 (19)−0.0032 (15)−0.0008 (15)−0.0055 (15)
C220.0146 (19)0.015 (2)0.0178 (18)−0.0037 (15)0.0039 (14)−0.0038 (15)
C230.018 (2)0.021 (2)0.022 (2)−0.0057 (16)0.0004 (16)−0.0064 (16)
C240.0154 (19)0.017 (2)0.030 (2)−0.0062 (16)0.0063 (16)−0.0098 (17)
C250.026 (2)0.024 (2)0.018 (2)−0.0099 (18)0.0074 (16)−0.0076 (17)
C260.022 (2)0.020 (2)0.021 (2)−0.0073 (17)−0.0044 (16)−0.0044 (16)
C310.0189 (19)0.0141 (19)0.0121 (17)−0.0022 (15)−0.0062 (14)−0.0010 (14)
C320.019 (2)0.018 (2)0.0162 (18)−0.0081 (16)−0.0061 (15)−0.0025 (15)
C330.025 (2)0.015 (2)0.022 (2)−0.0097 (17)−0.0054 (16)−0.0024 (16)
C340.027 (2)0.012 (2)0.024 (2)−0.0001 (16)−0.0081 (17)−0.0067 (16)
C350.017 (2)0.017 (2)0.0195 (19)0.0021 (16)−0.0019 (15)−0.0037 (16)
C360.022 (2)0.018 (2)0.0151 (18)−0.0068 (17)0.0020 (15)−0.0020 (15)
C410.0142 (18)0.019 (2)0.0144 (18)−0.0070 (16)0.0014 (14)−0.0077 (15)
C420.018 (2)0.017 (2)0.0162 (18)−0.0006 (16)0.0003 (15)−0.0040 (15)
C430.019 (2)0.027 (2)0.0180 (19)−0.0052 (17)−0.0008 (15)−0.0054 (16)
C440.022 (2)0.026 (2)0.0190 (19)−0.0122 (18)−0.0008 (16)−0.0068 (16)
C450.0175 (19)0.020 (2)0.0180 (19)−0.0092 (16)0.0047 (15)−0.0090 (16)
C460.0123 (18)0.0146 (19)0.0169 (18)−0.0047 (15)0.0023 (14)−0.0057 (15)
C470.0158 (19)0.016 (2)0.0189 (19)−0.0059 (16)−0.0003 (15)−0.0041 (15)
C480.0142 (19)0.019 (2)0.023 (2)−0.0009 (16)0.0011 (15)−0.0044 (16)
C490.019 (2)0.016 (2)0.026 (2)−0.0036 (16)0.0058 (16)−0.0044 (16)
C500.027 (2)0.020 (2)0.0180 (19)−0.0153 (18)0.0090 (16)−0.0086 (16)
N10.0145 (16)0.0126 (16)0.0143 (15)−0.0028 (13)0.0005 (12)−0.0036 (12)
N70.0158 (16)0.0121 (16)0.0190 (16)−0.0019 (13)−0.0038 (13)−0.0009 (13)
O10.0324 (18)0.0344 (19)0.0309 (16)−0.0209 (15)−0.0054 (13)−0.0089 (14)
O20.0209 (14)0.0182 (14)0.0101 (12)−0.0076 (12)0.0009 (10)−0.0023 (10)
O30.0206 (14)0.0158 (14)0.0130 (13)−0.0035 (11)−0.0021 (10)−0.0015 (10)
O40.0233 (17)0.040 (2)0.0330 (17)−0.0042 (14)−0.0052 (13)−0.0079 (14)
P10.0131 (5)0.0114 (5)0.0141 (5)−0.0018 (4)−0.0013 (4)−0.0035 (4)
Rh10.01397 (18)0.01172 (19)0.01518 (18)−0.00255 (13)−0.00048 (12)−0.00361 (12)

Geometric parameters (Å, °)

C1—O11.146 (5)C31—C361.389 (5)
C1—Rh11.817 (4)C31—P11.832 (4)
C2—O41.226 (5)C32—C331.379 (5)
C2—C31.497 (6)C32—H320.93
C2—C41.507 (6)C33—C341.388 (6)
C3—H3A0.96C33—H330.93
C3—H3B0.96C34—C351.371 (6)
C3—H3C0.96C34—H340.93
C4—H4A0.96C35—C361.381 (5)
C4—H4B0.96C35—H350.93
C4—H4C0.96C36—H360.93
C11—C161.385 (5)C41—C421.372 (5)
C11—C121.407 (5)C41—C461.414 (5)
C11—P11.823 (4)C41—N11.448 (5)
C12—C131.373 (5)C42—C431.410 (6)
C12—H120.93C42—H420.93
C13—C141.393 (5)C43—C441.368 (6)
C13—H130.93C43—H430.93
C14—C151.377 (6)C44—C451.424 (5)
C14—H140.93C44—H440.93
C15—C161.398 (5)C45—C501.416 (5)
C15—H150.93C45—C461.433 (5)
C16—H160.93C46—C471.423 (5)
C21—C261.394 (5)C47—C481.367 (5)
C21—C221.407 (5)C47—H470.93
C21—P11.825 (4)C48—C491.410 (6)
C22—C231.401 (5)C48—H480.93
C22—H220.93C49—C501.367 (6)
C23—C241.367 (5)C49—H490.93
C23—H230.93C50—H500.93
C24—C251.387 (6)N1—N71.281 (4)
C24—H240.93N1—O21.346 (4)
C25—C261.400 (6)N7—O31.323 (4)
C25—H250.93O2—Rh12.026 (3)
C26—H260.93O3—Rh12.082 (2)
C31—C321.385 (5)P1—Rh12.2240 (11)
O1—C1—Rh1177.7 (4)C32—C33—H33119.8
O4—C2—C3122.5 (4)C34—C33—H33119.8
O4—C2—C4121.1 (4)C35—C34—C33119.6 (4)
C3—C2—C4116.3 (4)C35—C34—H34120.2
C2—C3—H3A109.5C33—C34—H34120.2
C2—C3—H3B109.5C34—C35—C36120.2 (4)
H3A—C3—H3B109.5C34—C35—H35119.9
C2—C3—H3C109.5C36—C35—H35119.9
H3A—C3—H3C109.5C35—C36—C31120.7 (4)
H3B—C3—H3C109.5C35—C36—H36119.6
C2—C4—H4A109.5C31—C36—H36119.6
C2—C4—H4B109.5C42—C41—C46123.7 (3)
H4A—C4—H4B109.5C42—C41—N1118.5 (3)
C2—C4—H4C109.5C46—C41—N1117.8 (3)
H4A—C4—H4C109.5C41—C42—C43119.3 (4)
H4B—C4—H4C109.5C41—C42—H42120.3
C16—C11—C12118.5 (3)C43—C42—H42120.3
C16—C11—P1123.3 (3)C44—C43—C42119.5 (4)
C12—C11—P1118.1 (3)C44—C43—H43120.2
C13—C12—C11120.7 (4)C42—C43—H43120.2
C13—C12—H12119.7C43—C44—C45121.9 (4)
C11—C12—H12119.7C43—C44—H44119.1
C12—C13—C14120.5 (4)C45—C44—H44119.1
C12—C13—H13119.7C50—C45—C44122.5 (3)
C14—C13—H13119.7C50—C45—C46118.3 (3)
C15—C14—C13119.3 (3)C44—C45—C46119.2 (3)
C15—C14—H14120.3C41—C46—C47124.5 (3)
C13—C14—H14120.3C41—C46—C45116.3 (3)
C14—C15—C16120.5 (4)C47—C46—C45119.2 (3)
C14—C15—H15119.7C48—C47—C46120.3 (4)
C16—C15—H15119.7C48—C47—H47119.8
C11—C16—C15120.4 (4)C46—C47—H47119.8
C11—C16—H16119.8C47—C48—C49120.7 (4)
C15—C16—H16119.8C47—C48—H48119.6
C26—C21—C22118.7 (3)C49—C48—H48119.6
C26—C21—P1122.8 (3)C50—C49—C48120.3 (4)
C22—C21—P1118.4 (3)C50—C49—H49119.8
C23—C22—C21120.2 (3)C48—C49—H49119.8
C23—C22—H22119.9C49—C50—C45121.2 (4)
C21—C22—H22119.9C49—C50—H50119.4
C24—C23—C22120.4 (4)C45—C50—H50119.4
C24—C23—H23119.8N7—N1—O2123.9 (3)
C22—C23—H23119.8N7—N1—C41119.5 (3)
C23—C24—C25120.2 (4)O2—N1—C41116.7 (3)
C23—C24—H24119.9N1—N7—O3114.3 (3)
C25—C24—H24119.9N1—O2—Rh1110.0 (2)
C24—C25—C26120.3 (4)N7—O3—Rh1113.7 (2)
C24—C25—H25119.8C11—P1—C21102.64 (17)
C26—C25—H25119.8C11—P1—C31103.59 (16)
C21—C26—C25120.2 (4)C21—P1—C31106.98 (17)
C21—C26—H26119.9C11—P1—Rh1121.83 (13)
C25—C26—H26119.9C21—P1—Rh1113.03 (12)
C32—C31—C36118.7 (4)C31—P1—Rh1107.63 (12)
C32—C31—P1124.3 (3)C1—Rh1—O2176.15 (13)
C36—C31—P1117.0 (3)C1—Rh1—O3101.74 (14)
C33—C32—C31120.4 (4)O2—Rh1—O377.74 (10)
C33—C32—H32119.8C1—Rh1—P190.54 (12)
C31—C32—H32119.8O2—Rh1—P189.92 (8)
C32—C33—C34120.3 (4)O3—Rh1—P1167.66 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2279).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Basson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). Inorg. Chim. Acta, 84, 167–169.
  • Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J. (1986). Inorg. Chim. Acta, 119, 35–38.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  • Roodt, A. & Steyn, G. J. J. (2000). Res. Devel. Inorg. Chem. 2, 1–23.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). Rhodium Ex. 7–8, 12–14.
  • Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.
  • Tamaki, K. & Okabe, N. (1998). Acta Cryst. C54, 195–197.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography