PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3074.
Published online 2009 November 14. doi:  10.1107/S160053680904714X
PMCID: PMC2972139

(Z)-4-[4-(Dimethyl­amino)benzyl­idene]-3-methyl­isoxazol-5(4H)-one

Abstract

The title compound, C13H14N2O2, an isoxazol-5-one derivative, was synthesized by a one-pot, three-component condensation reaction of methyl acetoacetate, hydroxy­lamine hydro­chloride and 4-(dimethyl­amino)benzaldehyde. All the non-H atoms are co-planar [r.m.s deviation = 0.0039 Å], with a Z configuration about the C=C bond. The dihedral angle between the phenyl ring and the isoxazole ring is 2.58 (19)°.

Related literature

For the biological activity of aryl­methyl­ene isoxazolone deriv­atives, see: Ishioka et al. (2002 [triangle]); Liu et al. (2005 [triangle]). For details of the synthesis of related compounds, see: Cocivera et al. (1976 [triangle]); Zhang et al. (2008 [triangle]); Villemin et al. (1993 [triangle]). For related structures, see: Kay et al. (2001 [triangle]); Wolf et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3074-scheme1.jpg

Experimental

Crystal data

  • C13H14N2O2
  • M r = 230.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3074-efi1.jpg
  • a = 6.4201 (10) Å
  • b = 7.8239 (12) Å
  • c = 12.1901 (15) Å
  • α = 100.272 (2)°
  • β = 97.319 (1)°
  • γ = 101.461 (2)°
  • V = 582.01 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.13 × 0.09 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.988, T max = 0.993
  • 2990 measured reflections
  • 2020 independent reflections
  • 943 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.178
  • S = 1.03
  • 2020 reflections
  • 157 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904714X/su2156sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904714X/su2156Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for financial support from the the Foundation of Jiangsu Key Laboratory of Marine Biotechnology (grant No. 2009HS04).

supplementary crystallographic information

Comment

Arylmethylene isoxazolone derivatives are effective anti-psychotics in the treatment of depression and schizophrenia. Studies on these compounds have mainly concentrated on their biological activities (Ishioka et al., 2002; Liu et al., 2005), and syntheses (Cocivera et al., 1976; Zhang et al., 2008; Villemin et al., 1993). However, structural studies have rarely been reported (Kay et al., 2001; Wolf et al., 1995). As part of our investigations on arylmethylene isoxazolone derivatives, we report herein on the structure of the title compound. It was synthesized by a three component condensation reaction of methyl acetoacetate, hydroxylamine with 4-dimethylaminobenzaldehyde, in aqueous media under ultrasonic irradiation.

The molecular structure of the title compound is illustrated in Fig. 1, and geometrical parameters are given in the archived CIF. The bond lengths and angles agree well with those reported for the related compound 4-(N-(2,4,6-Tri-t-butylphenyl)iminomethylene)-3-t-butylisoxazol-5(4H)-one (Wolf et al., 1995). The molecular structure adopts a planar conformation with Z-configuration about the C2═C5 double bond.

Experimental

A mixture of methyl acetoacetate (4 mol), hydroxylamine hydrochloride (4 mmol), and pyridine(4 mmol) in distilled water(10 ml) was irradiated in the water bath of an ultrasonic cleaner for 10 min, then 4-dimethylaminobenzaldehyde(4 mmol) was slowly added to the mixture. The resulting mixture was irradiated in the water bath of an ultrasonic cleaner for 0.5 h. The solution was kept at r.t. overnight, giving a turbid solution. It was filtered to give a solid that was washed with cold water and ethanol. The crude product was recrystallized from ethanol to afford the title compound as a yellow solid. Single crystals, suitable for X-ray analysis, were obtained by slow evaporation of an aqueous ethanol (95%) solution at ambient temperature after 4 d. Elemental analysis, calculated for C13H14N2O2: C 67.81, H 6.13, N 12.17%; found: C 67.87, H 6.19, N 12.11%.

Refinement

The H-atoms were included in calculated positions and allowed to ride on their parent atoms: C—H = 0.93–0.96 A °, with Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C13H14N2O2Z = 2
Mr = 230.26F(000) = 244
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4201 (10) ÅCell parameters from 607 reflections
b = 7.8239 (12) Åθ = 2.9–25.1°
c = 12.1901 (15) ŵ = 0.09 mm1
α = 100.272 (2)°T = 298 K
β = 97.319 (1)°Needle, red
γ = 101.461 (2)°0.13 × 0.09 × 0.08 mm
V = 582.01 (15) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2020 independent reflections
Radiation source: fine-focus sealed tube943 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.988, Tmax = 0.993k = −9→6
2990 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.069P)2 + ] where P = (Fo2 + 2Fc2)/3
2020 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.7351 (5)0.6599 (4)0.8929 (3)0.0671 (10)
N20.3808 (5)0.8488 (4)0.1943 (3)0.0604 (9)
O10.9130 (4)0.7385 (4)0.8421 (2)0.0746 (9)
O20.9643 (4)0.8104 (4)0.6764 (2)0.0797 (9)
C10.8347 (6)0.7524 (5)0.7333 (4)0.0626 (11)
C20.6035 (5)0.6855 (5)0.7140 (3)0.0492 (9)
C30.5624 (5)0.6321 (4)0.8187 (3)0.0503 (9)
C40.3517 (5)0.5490 (5)0.8451 (3)0.0634 (11)
H4A0.37220.52370.91950.095*
H4B0.28950.44000.79070.095*
H4C0.25680.62930.84230.095*
C50.4464 (5)0.6758 (4)0.6248 (3)0.0506 (9)
H50.30940.62660.63730.061*
C60.4428 (5)0.7234 (4)0.5171 (3)0.0458 (9)
C70.2412 (5)0.6921 (5)0.4469 (3)0.0546 (10)
H70.11810.64200.47300.066*
C80.2192 (5)0.7323 (5)0.3417 (3)0.0563 (10)
H80.08290.70860.29800.068*
C90.4013 (5)0.8091 (4)0.2993 (3)0.0496 (9)
C100.6035 (5)0.8435 (5)0.3700 (3)0.0526 (10)
H100.72640.89650.34480.063*
C110.6244 (5)0.8012 (4)0.4750 (3)0.0507 (9)
H110.76050.82440.51870.061*
C120.5668 (6)0.9262 (5)0.1481 (3)0.0691 (12)
H12A0.67211.00580.20790.104*
H12B0.52240.99110.09290.104*
H12C0.62870.83290.11290.104*
C130.1725 (6)0.8003 (6)0.1198 (3)0.0751 (12)
H13A0.11910.67340.10500.113*
H13B0.18860.83760.04990.113*
H13C0.07250.85810.15550.113*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0601 (19)0.091 (3)0.058 (2)0.0251 (18)0.0110 (18)0.027 (2)
N20.057 (2)0.066 (2)0.057 (2)0.0083 (16)0.0014 (17)0.0214 (18)
O10.0534 (16)0.105 (2)0.0670 (19)0.0177 (15)0.0012 (14)0.0282 (17)
O20.0470 (15)0.116 (2)0.075 (2)0.0066 (15)0.0082 (14)0.0298 (18)
C10.053 (2)0.076 (3)0.058 (3)0.018 (2)0.003 (2)0.012 (2)
C20.0429 (19)0.056 (2)0.050 (2)0.0151 (16)0.0067 (17)0.0117 (19)
C30.051 (2)0.059 (2)0.045 (2)0.0233 (18)0.0035 (18)0.0117 (19)
C40.067 (2)0.077 (3)0.055 (3)0.020 (2)0.013 (2)0.027 (2)
C50.0423 (18)0.049 (2)0.063 (3)0.0112 (16)0.0113 (18)0.016 (2)
C60.046 (2)0.046 (2)0.048 (2)0.0124 (16)0.0067 (17)0.0134 (18)
C70.044 (2)0.061 (3)0.060 (3)0.0079 (17)0.0069 (18)0.021 (2)
C80.046 (2)0.058 (2)0.062 (3)0.0066 (18)0.0001 (18)0.016 (2)
C90.051 (2)0.047 (2)0.052 (2)0.0118 (17)0.0030 (18)0.0161 (19)
C100.0437 (19)0.059 (2)0.055 (2)0.0097 (17)0.0045 (18)0.016 (2)
C110.0435 (19)0.055 (2)0.054 (2)0.0119 (17)0.0021 (17)0.0155 (19)
C120.075 (3)0.077 (3)0.060 (3)0.016 (2)0.015 (2)0.027 (2)
C130.071 (3)0.096 (3)0.059 (3)0.018 (2)−0.002 (2)0.029 (2)

Geometric parameters (Å, °)

N1—C31.294 (4)C6—C111.405 (4)
N1—O11.451 (3)C6—C71.409 (5)
N2—C91.367 (4)C7—C81.371 (5)
N2—C121.455 (4)C7—H70.9300
N2—C131.457 (4)C8—C91.407 (4)
O1—C11.388 (4)C8—H80.9300
O2—C11.220 (4)C9—C101.412 (5)
C1—C21.446 (5)C10—C111.375 (4)
C2—C51.365 (5)C10—H100.9300
C2—C31.451 (4)C11—H110.9300
C3—C41.481 (4)C12—H12A0.9600
C4—H4A0.9600C12—H12B0.9600
C4—H4B0.9600C12—H12C0.9600
C4—H4C0.9600C13—H13A0.9600
C5—C61.426 (4)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C3—N1—O1106.5 (3)C8—C7—H7118.7
C9—N2—C12121.9 (3)C6—C7—H7118.7
C9—N2—C13120.9 (3)C7—C8—C9120.4 (3)
C12—N2—C13117.0 (3)C7—C8—H8119.8
C1—O1—N1109.2 (3)C9—C8—H8119.8
O2—C1—O1118.0 (3)N2—C9—C8120.8 (3)
O2—C1—C2134.7 (4)N2—C9—C10122.0 (3)
O1—C1—C2107.3 (3)C8—C9—C10117.2 (3)
C5—C2—C1132.2 (3)C11—C10—C9122.0 (3)
C5—C2—C3124.2 (3)C11—C10—H10119.0
C1—C2—C3103.6 (3)C9—C10—H10119.0
N1—C3—C2113.3 (3)C10—C11—C6120.9 (3)
N1—C3—C4119.5 (3)C10—C11—H11119.5
C2—C3—C4127.1 (3)C6—C11—H11119.5
C3—C4—H4A109.5N2—C12—H12A109.5
C3—C4—H4B109.5N2—C12—H12B109.5
H4A—C4—H4B109.5H12A—C12—H12B109.5
C3—C4—H4C109.5N2—C12—H12C109.5
H4A—C4—H4C109.5H12A—C12—H12C109.5
H4B—C4—H4C109.5H12B—C12—H12C109.5
C2—C5—C6135.0 (3)N2—C13—H13A109.5
C2—C5—H5112.5N2—C13—H13B109.5
C6—C5—H5112.5H13A—C13—H13B109.5
C11—C6—C7116.8 (3)N2—C13—H13C109.5
C11—C6—C5125.4 (3)H13A—C13—H13C109.5
C7—C6—C5117.8 (3)H13B—C13—H13C109.5
C8—C7—C6122.7 (3)
C3—N1—O1—C1−0.9 (4)C2—C5—C6—C7−179.7 (4)
N1—O1—C1—O2−177.5 (3)C11—C6—C7—C80.8 (5)
N1—O1—C1—C21.1 (4)C5—C6—C7—C8−179.8 (3)
O2—C1—C2—C5−5.2 (8)C6—C7—C8—C9−0.4 (5)
O1—C1—C2—C5176.5 (4)C12—N2—C9—C8−179.2 (3)
O2—C1—C2—C3177.5 (4)C13—N2—C9—C8−4.7 (5)
O1—C1—C2—C3−0.9 (4)C12—N2—C9—C101.1 (5)
O1—N1—C3—C20.4 (4)C13—N2—C9—C10175.6 (3)
O1—N1—C3—C4178.9 (3)C7—C8—C9—N2179.7 (3)
C5—C2—C3—N1−177.3 (3)C7—C8—C9—C10−0.6 (5)
C1—C2—C3—N10.3 (4)N2—C9—C10—C11−179.0 (3)
C5—C2—C3—C44.2 (6)C8—C9—C10—C111.3 (5)
C1—C2—C3—C4−178.2 (3)C9—C10—C11—C6−0.9 (5)
C1—C2—C5—C60.8 (7)C7—C6—C11—C10−0.1 (5)
C3—C2—C5—C6177.6 (3)C5—C6—C11—C10−179.5 (3)
C2—C5—C6—C11−0.4 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2156).

References

  • Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cocivera, M., Effio, A., Chen, H. E. & Vaish, S. (1976). J. Am. Chem. Soc. 98, 7362–7366.
  • Ishioka, T., Kubo, A., Koiso, Y., Nagasawa, K., Itai, A. & Hashimoto, Y. (2002). Bioorg. Med. Chem. 10, 1555–1566. [PubMed]
  • Kay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Wyss, C. P., Giffin, S. M., McKinnie, I. T. & Barnes, T. H. (2001). J. Mater. Chem. 11, 2271–2281.
  • Liu, Z. G., Han, B., Liu, Q., Zhang, W., Yang, L., Liu, Z. L. & Yu, W. (2005). Synlett, pp. 1579–1580.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Villemin, D., Martin, B. & Garrigues, B. (1993). Synth. Commun. 23, 2251–2257.
  • Wolf, R., Wong, M. W., Kennard, C. H. L. & Wentrup, C. (1995). J. Am. Chem. Soc. 117, 6789–6790.
  • Zhang, Y. Q., Ma, J. J., Wang, C., Li, J. C., Zhang, D. N., Zang, X. H. & Li, J. (2008). Chin. J. Org. Chem. 28, 914–917.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography