PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3129.
Published online 2009 November 21. doi:  10.1107/S160053680904848X
PMCID: PMC2972136

2,3-O-Isopropyl­idene-3-C-phenyl­erythrofuran­ose

Abstract

The title compound, C13H16O, comprises two fused five-membered rings. Each ring has an envelope conformation, with the ether O atom in the furan­ose ring, and the CMe2 atom in the acetonide ring as the flap atoms. In the crystal, centrosymmetrically related mol­ecules associate via hydr­oxy–ether O—H(...)O hydrogen bonds and the resulting dimers are linked into a supra­molecular chain with a flattened topology via C—H(...)Ohydr­oxy contacts, and aligned in the a-axis direction.

Related literature

For the relevance and chemistry of systems related to the title compound, see: Pedersen et al. (2009 [triangle]); Robinson et al. (2006 [triangle], 2009 [triangle]); Valente et al. (2009 [triangle]). For the reactions of Co(II) complexes with endoperoxides, see: Boyd et al. (1980 [triangle]); Sutbeyaz et al. (1988 [triangle]); Greatrex et al. (2003 [triangle]); Greatrex & Taylor (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3129-scheme1.jpg

Experimental

Crystal data

  • C13H16O4
  • M r = 236.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3129-efi1.jpg
  • a = 5.716 (2) Å
  • b = 9.201 (4) Å
  • c = 11.871 (6) Å
  • α = 89.76 (3)°
  • β = 78.72 (2)°
  • γ = 73.70 (2)°
  • V = 586.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.35 × 0.35 × 0.10 mm

Data collection

  • Rigaku AFC12κ/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.773, T max = 1.000
  • 14572 measured reflections
  • 2408 independent reflections
  • 2361 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.157
  • S = 1.16
  • 2408 reflections
  • 157 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904848X/sj2687sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904848X/sj2687Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.

supplementary crystallographic information

Comment

The dihydroxyation of monocyclic and bicyclic 1,2-dioxines has provided a new route for the stereoselective synthesis of a diverse range of carbohydrates and related compounds (Pedersen et al., 2009; Robinson et al., 2006; Robinson et al., 2009; Valente et al., 2009). During the course of these studies, the title compound, (I), was obtained by the Co(II)-mediated ring-opening of the precursor 1,2-dioxane, post dihydroxyation. The reactions of Co(II) complexes with endoperoxides have been well documented (Boyd et al., 1980; Sutbeyaz et al., 1988; Greatrex et al., 2003; Greatrex & Taylor, 2005).

The molecular structure of (I), Fig. 1, comprises two fused five-membered rings linked at the C3—C4 bond. Each of the five-membered rings adopts an envelope conformation, on atom O1 for the furanose (O1, C2—C5) ring, and on atom C6 for the acetonide (O3, O4, C3, C4, C6) ring. When viewed down the C3—C4 axis, the O1 atom lies above the plane through the four remaining atoms, away from the phenyl substituent and the C6 atom lies below the plane, being orientated in the same direction as the phenyl ring. In the crystal structure centrosymmetrically related pairs of molecules associate via O—H···O hydrogen bonds to form an eight-membered {···OCOH}2 synthon, Table 1 and Fig. 2. The dimers are linked into a supramolecular chain via C—H···O contacts and ten-membered {···OH···OCH}2 synthons, Table 1. The resulting chain comprising alternating eight- and ten-membered synthons has a flattened topology, Fig. 2, and is aligned along the a axis.

Experimental

For full synthetic procedures and characterization data see Pedersen et al. (2009) and Robinson et al. (2009). To a stirred solution of Co(salen)2 (17 mg, 0.05 mmol) in THF (5 ml) at ambient temperature was added (3aR,7aS)-3a-phenyl-tetrahydro-2,2-dimethyl-[1,3]dioxolo[4,5-d][1,2]dioxine (501 mg, 2.12 mmol), and the reaction left to stir until complete by TLC (~16 h). All volatiles were removed in vacuo giving a crude mixture of regioisomers in a 40:60 ratio. The isomers were fully separated by flash chromatography giving a combined total yield of 496 mg (99%). Compound (I) was isolated as a colourless solid (198 mg), and the pure material was recrystallized from a slowly evaporating 1:1 mixture of dichloromethane/heptane to give colourless prisms, m. pt. 424–425 K. The compound was found to exist solely in its cyclic hemi-acetal form(s) both as a solid indicated by IR (absence of carbonyl signal), and in CDCl3 solution which revealed a 90:10 ratio of anomers.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O–bound H-atom was located in a difference Fourier map and was refined with an O–H restraint of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.
Fig. 2.
Supramolecular chain formation along the a axis in (I) mediated by O—H···O hydrogen bonds (orange dashed lines) and C—H···O contacts (blue dashed lines).

Crystal data

C13H16O4Z = 2
Mr = 236.26F(000) = 252
Triclinic, P1Dx = 1.337 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 5.716 (2) ÅCell parameters from 2428 reflections
b = 9.201 (4) Åθ = 3.5–27.5°
c = 11.871 (6) ŵ = 0.10 mm1
α = 89.76 (3)°T = 173 K
β = 78.72 (2)°Prism, pale-yellow
γ = 73.70 (2)°0.35 × 0.35 × 0.10 mm
V = 586.9 (4) Å3

Data collection

Rigaku AFC12κ/SATURN724 diffractometer2408 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −7→7
Tmin = 0.773, Tmax = 1.000k = −10→11
14572 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.0929P)2 + 0.1356P] where P = (Fo2 + 2Fc2)/3
2408 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.11375 (18)0.89747 (11)0.40885 (9)0.0294 (3)
O20.29860 (19)0.86868 (13)0.42473 (9)0.0335 (3)
H2O0.26830.93940.47470.050*
O30.1029 (2)0.87393 (12)0.15795 (9)0.0321 (3)
O4−0.09610 (17)0.69527 (11)0.20274 (8)0.0270 (3)
C20.1242 (3)0.91139 (17)0.35425 (12)0.0281 (3)
H20.11021.01700.32960.034*
C30.2058 (3)0.79968 (16)0.25019 (12)0.0264 (3)
H30.39050.75480.22910.032*
C40.0642 (2)0.67820 (16)0.28391 (11)0.0248 (3)
C5−0.0944 (3)0.73843 (16)0.40319 (12)0.0273 (3)
H5A−0.26120.72260.41200.033*
H5B−0.01300.68640.46450.033*
C6−0.0013 (3)0.77251 (17)0.10732 (12)0.0300 (4)
C410.2235 (2)0.51612 (16)0.28472 (12)0.0263 (3)
C420.4230 (3)0.48304 (18)0.34152 (13)0.0322 (4)
H420.46200.56300.37720.039*
C430.5645 (3)0.33463 (19)0.34623 (15)0.0380 (4)
H430.70000.31350.38490.046*
C440.5092 (3)0.21693 (18)0.29478 (14)0.0378 (4)
H440.60590.11510.29820.045*
C450.3115 (3)0.24891 (18)0.23827 (13)0.0362 (4)
H450.27350.16860.20250.043*
C460.1683 (3)0.39770 (17)0.23361 (12)0.0307 (4)
H460.03230.41840.19530.037*
C610.1984 (3)0.6632 (2)0.02004 (14)0.0398 (4)
H61A0.12520.5942−0.01410.060*
H61B0.32940.60450.05820.060*
H61C0.27010.7202−0.04050.060*
C62−0.2175 (3)0.8637 (2)0.05769 (14)0.0397 (4)
H62A−0.28980.79480.02290.060*
H62B−0.15910.9276−0.00110.060*
H62C−0.34390.92790.11910.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0253 (5)0.0272 (6)0.0334 (6)−0.0055 (4)−0.0032 (4)−0.0028 (4)
O20.0280 (6)0.0361 (6)0.0352 (6)−0.0045 (4)−0.0103 (4)−0.0069 (4)
O30.0409 (6)0.0306 (6)0.0301 (6)−0.0151 (5)−0.0124 (4)0.0082 (4)
O40.0261 (5)0.0309 (6)0.0258 (5)−0.0093 (4)−0.0082 (4)0.0054 (4)
C20.0248 (7)0.0279 (7)0.0316 (7)−0.0071 (5)−0.0062 (5)0.0009 (6)
C30.0258 (7)0.0266 (7)0.0272 (7)−0.0083 (5)−0.0051 (5)0.0028 (5)
C40.0236 (7)0.0282 (8)0.0237 (7)−0.0080 (5)−0.0066 (5)0.0025 (5)
C50.0258 (7)0.0279 (8)0.0274 (7)−0.0071 (5)−0.0042 (5)0.0014 (5)
C60.0343 (8)0.0326 (8)0.0258 (7)−0.0128 (6)−0.0079 (6)0.0056 (6)
C410.0265 (7)0.0271 (8)0.0243 (6)−0.0075 (6)−0.0030 (5)0.0025 (5)
C420.0308 (8)0.0308 (8)0.0358 (8)−0.0077 (6)−0.0105 (6)0.0022 (6)
C430.0332 (8)0.0367 (9)0.0420 (9)−0.0038 (6)−0.0114 (7)0.0070 (7)
C440.0419 (9)0.0275 (8)0.0365 (8)−0.0006 (6)−0.0037 (7)0.0053 (6)
C450.0479 (9)0.0276 (8)0.0325 (8)−0.0108 (7)−0.0065 (7)0.0011 (6)
C460.0347 (8)0.0304 (8)0.0283 (7)−0.0102 (6)−0.0080 (6)0.0031 (6)
C610.0430 (9)0.0468 (10)0.0281 (8)−0.0141 (7)−0.0015 (6)−0.0018 (7)
C620.0437 (9)0.0442 (10)0.0355 (8)−0.0130 (7)−0.0176 (7)0.0125 (7)

Geometric parameters (Å, °)

O1—C21.4278 (18)C41—C461.388 (2)
O1—C51.4370 (19)C41—C421.397 (2)
O2—C21.3972 (17)C42—C431.385 (2)
O2—H2O0.8400C42—H420.9500
O3—C61.4295 (18)C43—C441.385 (3)
O3—C31.4254 (17)C43—H430.9500
O4—C61.4323 (18)C44—C451.386 (2)
O4—C41.4339 (16)C44—H440.9500
C2—C31.522 (2)C45—C461.391 (2)
C2—H21.0000C45—H450.9500
C3—C41.563 (2)C46—H460.9500
C3—H31.0000C61—H61A0.9800
C4—C411.515 (2)C61—H61B0.9800
C4—C51.535 (2)C61—H61C0.9800
C5—H5A0.9900C62—H62A0.9800
C5—H5B0.9900C62—H62B0.9800
C6—C621.509 (2)C62—H62C0.9800
C6—C611.513 (2)
C2—O1—C5106.30 (11)O4—C6—C61111.43 (13)
C2—O2—H2O107.7C62—C6—C61113.45 (14)
C6—O3—C3107.42 (11)C46—C41—C42118.91 (14)
C6—O4—C4108.29 (10)C46—C41—C4120.93 (13)
O2—C2—O1111.99 (12)C42—C41—C4120.10 (13)
O2—C2—C3108.35 (12)C43—C42—C41120.58 (15)
O1—C2—C3104.47 (11)C43—C42—H42119.7
O2—C2—H2110.6C41—C42—H42119.7
O1—C2—H2110.6C44—C43—C42120.26 (15)
C3—C2—H2110.6C44—C43—H43119.9
O3—C3—C2108.22 (12)C42—C43—H43119.9
O3—C3—C4104.64 (11)C43—C44—C45119.46 (15)
C2—C3—C4104.60 (11)C43—C44—H44120.3
O3—C3—H3112.9C45—C44—H44120.3
C2—C3—H3112.9C46—C45—C44120.51 (15)
C4—C3—H3112.9C46—C45—H45119.7
O4—C4—C41112.22 (11)C44—C45—H45119.7
O4—C4—C5108.90 (11)C45—C46—C41120.27 (14)
C41—C4—C5112.12 (12)C45—C46—H46119.9
O4—C4—C3103.36 (10)C41—C46—H46119.9
C41—C4—C3116.44 (11)C6—C61—H61A109.5
C5—C4—C3102.99 (11)C6—C61—H61B109.5
O1—C5—C4105.33 (11)H61A—C61—H61B109.5
O1—C5—H5A110.7C6—C61—H61C109.5
C4—C5—H5A110.7H61A—C61—H61C109.5
O1—C5—H5B110.7H61B—C61—H61C109.5
C4—C5—H5B110.7C6—C62—H62A109.5
H5A—C5—H5B108.8C6—C62—H62B109.5
O3—C6—O4104.00 (11)H62A—C62—H62B109.5
O3—C6—C62109.07 (13)C6—C62—H62C109.5
O4—C6—C62108.34 (12)H62A—C62—H62C109.5
O3—C6—C61110.10 (13)H62B—C62—H62C109.5
C5—O1—C2—O2−76.45 (14)C3—O3—C6—O434.96 (14)
C5—O1—C2—C340.60 (13)C3—O3—C6—C62150.39 (12)
C6—O3—C3—C2−133.84 (12)C3—O3—C6—C61−84.52 (14)
C6—O3—C3—C4−22.73 (13)C4—O4—C6—O3−33.70 (14)
O2—C2—C3—O3−154.79 (11)C4—O4—C6—C62−149.65 (13)
O1—C2—C3—O385.67 (13)C4—O4—C6—C6184.87 (14)
O2—C2—C3—C494.07 (13)O4—C4—C41—C46−14.92 (18)
O1—C2—C3—C4−25.47 (13)C5—C4—C41—C46108.02 (15)
C6—O4—C4—C41−107.03 (13)C3—C4—C41—C46−133.74 (14)
C6—O4—C4—C5128.23 (12)O4—C4—C41—C42167.76 (12)
C6—O4—C4—C319.23 (13)C5—C4—C41—C42−69.29 (16)
O3—C3—C4—O42.14 (13)C3—C4—C41—C4248.95 (18)
C2—C3—C4—O4115.84 (12)C46—C41—C42—C430.4 (2)
O3—C3—C4—C41125.66 (12)C4—C41—C42—C43177.73 (13)
C2—C3—C4—C41−120.64 (13)C41—C42—C43—C44−0.2 (2)
O3—C3—C4—C5−111.22 (12)C42—C43—C44—C450.2 (2)
C2—C3—C4—C52.48 (13)C43—C44—C45—C46−0.4 (2)
C2—O1—C5—C4−39.18 (13)C44—C45—C46—C410.6 (2)
O4—C4—C5—O1−88.03 (13)C42—C41—C46—C45−0.6 (2)
C41—C4—C5—O1147.17 (11)C4—C41—C46—C45−177.92 (13)
C3—C4—C5—O121.22 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2o···O1i0.841.932.755 (2)166
C5—H5a···O2ii0.992.473.296 (3)140

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2687).

References

  • Boyd, J. D., Foote, C. S. & Imagawa, D. K. (1980). J. Am. Chem. Soc. 102, 3641–3642.
  • Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Greatrex, B. W., Jenkins, N. F., Taylor, D. K. & Tiekink, E. R. T. (2003). J. Org. Chem. 68, 5205–5210. [PubMed]
  • Greatrex, B. W. & Taylor, D. K. (2005). J. Org. Chem. 70, 470–476. [PubMed]
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Pedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400–4403. [PubMed]
  • Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Robinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093–5096. [PubMed]
  • Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236–7244. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sutbeyaz, Y., Secen, H. & Balci, M. (1988). J. Org. Chem. 53, 2312–2317.
  • Valente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274–282. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography