PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3230.
Published online 2009 November 28. doi:  10.1107/S1600536809051034
PMCID: PMC2972133

(E)-N′-(3,4-Dimethoxy­benzyl­idene)-2-(8-quinol­yloxy)acetohydrazide–methanol–water (1/1/1)

Abstract

In the title compound, C20H19N3O4·CH4O·H2O, the Schiff base mol­ecule is almost planar, with a dihedral angle of 1.2 (1)° between the benzene ring and the quinoline ring system. An intra­molecular N—H(...)O hydrogen bond generates an S(6) ring. In the crystal, the methanol and water solvent mol­ecules are linked to the Schiff base mol­ecule via N—H(...)O, O—H(...)O, O—H(...)N and O—H(...)(O,N) hydrogen bonds.

Related literature

For background to the applications of 8-hydroxy­quinoline and its derivatives, see: Bratzel et al. (1972 [triangle]); Karmakar et al. (2007 [triangle]); Pierre et al. (2003 [triangle]). For a Schiff base compound containing 2,5-dimethoxy­benzaldehyde, see: Wang et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3230-scheme1.jpg

Experimental

Crystal data

  • C20H19N3O4·CH4O·H2O
  • M r = 415.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3230-efi1.jpg
  • a = 8.807 (2) Å
  • b = 10.071 (3) Å
  • c = 13.121 (3) Å
  • α = 68.702 (4)°
  • β = 74.552 (3)°
  • γ = 82.458 (5)°
  • V = 1044.4 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 295 K
  • 0.21 × 0.18 × 0.16 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.980, T max = 0.985
  • 5612 measured reflections
  • 3676 independent reflections
  • 1571 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.126
  • S = 1.01
  • 3676 reflections
  • 273 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809051034/hb5253sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809051034/hb5253Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

8-Hydroxyquinoline and its derivatives have been used widely in analytical chemistry (Bratzel et al., 1972), coordination chemistry (Karmakar et al., 2007), pharmaceutical chemistry (Pierre et al., 2003) and many other topics. As part of our on going search for good extractants of metal ions or a biologically active material, the title compound was obtained in the reaction of quinolin-8-yloxyacetic acid hydrazide and 3,4-dimethoxybenzaldehyde.

The Schiff base molecule of the compound displays a trans configuration with respect to the C=N and C—N bonds(Fig. 1). All the bond lengths are within normal(Allen et al., 1987), and are comparable to those in the related compound (E)-N'-(2,5-Dimethoxybenzylidene)-2-(8- quinolyloxy)acetohydrazide methanol solvate (Wang et al., 2009). The molecule is nearly planar, with a dihedral angle of the benzene ring and the quinoline ring is 1.2 (1)°. The methanol and water solvate molecules are linked to the host via N—H···O, O—H···O and O—H···N hydrogen bonds(Table 1).

Experimental

3,4-Dimethoxybenzaldehyde (0.1 mmol, 16.6 mg) and 2-(quinolin-8-yloxy) acetohydrazide (2.18 g, 10 mmol), were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Colourless blocks of (I) were formed by gradual evaporation of the solvent over a period of six days at room temperature.

Refinement

All H atoms were initially located in a difference Fourier map. C-bound H atoms were constrained to an ideal geometry, with C—H = 0.93–0.97 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å. Uiso(H) = 1.2Ueq(C,N), and 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.

Crystal data

C20H19N3O4·CH4O·H2OZ = 2
Mr = 415.44F(000) = 440
Triclinic, P1Dx = 1.321 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.807 (2) ÅCell parameters from 583 reflections
b = 10.071 (3) Åθ = 2.6–22.5°
c = 13.121 (3) ŵ = 0.10 mm1
α = 68.702 (4)°T = 295 K
β = 74.552 (3)°Block, colourless
γ = 82.458 (5)°0.21 × 0.18 × 0.16 mm
V = 1044.4 (4) Å3

Data collection

Siemens SMART CCD diffractometer3676 independent reflections
Radiation source: fine-focus sealed tube1571 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.980, Tmax = 0.985k = −10→11
5612 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.126w = 1/[σ2(Fo2) + (0.0363P)2 + 0.0145P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3676 reflectionsΔρmax = 0.19 e Å3
273 parametersΔρmin = −0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.9264 (2)0.2984 (2)1.08007 (16)0.0553 (6)
O20.7983 (3)0.3641 (2)0.83136 (18)0.0739 (7)
O30.3497 (2)0.9140 (2)0.60039 (16)0.0594 (6)
O40.2433 (3)1.1261 (2)0.66550 (17)0.0672 (7)
O50.7438 (3)0.5521 (2)0.15037 (15)0.0700 (7)
H210.79700.48030.18340.105*
H220.64790.53510.18410.105*
O60.5689 (3)0.4737 (3)0.7121 (2)0.0931 (9)
H60.63060.46280.75190.140*
N10.9468 (3)0.3418 (3)1.2638 (2)0.0573 (8)
N20.7469 (3)0.4881 (3)0.95154 (19)0.0507 (7)
H80.76000.49501.01210.061*
N30.6533 (3)0.5866 (3)0.88784 (19)0.0517 (7)
C10.9595 (4)0.3630 (4)1.3543 (3)0.0787 (12)
H10.91080.44491.36750.094*
C21.0419 (5)0.2701 (4)1.4323 (3)0.0831 (12)
H21.04700.29081.49480.100*
C31.1133 (4)0.1508 (4)1.4153 (3)0.0739 (11)
H31.16860.08831.46600.089*
C41.1039 (4)0.1214 (4)1.3206 (3)0.0542 (9)
C51.1758 (4)−0.0007 (4)1.2967 (3)0.0676 (10)
H51.2304−0.06751.34590.081*
C61.1660 (4)−0.0212 (4)1.2027 (3)0.0737 (11)
H6A1.2138−0.10231.18780.088*
C71.0845 (4)0.0785 (4)1.1268 (3)0.0627 (10)
H71.08040.06361.06170.075*
C81.0114 (4)0.1970 (3)1.1484 (3)0.0506 (8)
C91.0192 (3)0.2217 (3)1.2462 (2)0.0487 (8)
C100.9210 (4)0.2751 (3)0.9812 (2)0.0556 (9)
H10A0.88370.18021.00170.067*
H10B1.02690.27880.93380.067*
C110.8163 (4)0.3817 (4)0.9153 (3)0.0541 (9)
C120.5916 (4)0.6888 (3)0.9221 (2)0.0531 (9)
H120.60810.69190.98830.064*
C130.4960 (4)0.8004 (3)0.8595 (2)0.0481 (8)
C140.4684 (3)0.7989 (3)0.7596 (2)0.0469 (8)
H140.50830.72290.73480.056*
C150.3838 (4)0.9073 (3)0.6981 (2)0.0486 (8)
C160.3235 (4)1.0225 (3)0.7344 (3)0.0520 (9)
C170.3500 (4)1.0262 (3)0.8314 (3)0.0613 (10)
H170.31111.10310.85530.074*
C180.4354 (4)0.9145 (4)0.8945 (3)0.0590 (9)
H180.45170.91700.96100.071*
C190.4215 (4)0.8044 (3)0.5551 (2)0.0688 (11)
H19A0.53390.80390.54330.103*
H19B0.39500.82260.48470.103*
H19C0.38360.71340.60710.103*
C200.1775 (5)1.2441 (4)0.6990 (3)0.0983 (14)
H20A0.09731.21230.76750.147*
H20B0.13191.31240.64110.147*
H20C0.25861.28770.71110.147*
C210.6316 (5)0.4092 (5)0.6337 (3)0.1262 (19)
H21A0.73830.43720.59790.189*
H21B0.57030.43780.57810.189*
H21C0.63010.30760.67000.189*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0614 (15)0.0611 (15)0.0474 (12)0.0089 (12)−0.0221 (12)−0.0206 (11)
O20.092 (2)0.0846 (18)0.0659 (15)0.0131 (14)−0.0410 (14)−0.0398 (14)
O30.0733 (17)0.0556 (14)0.0531 (14)0.0098 (12)−0.0224 (12)−0.0219 (11)
O40.0853 (18)0.0579 (15)0.0612 (14)0.0245 (13)−0.0244 (13)−0.0280 (12)
O50.0792 (17)0.0696 (16)0.0639 (14)0.0069 (13)−0.0289 (13)−0.0207 (12)
O60.089 (2)0.124 (2)0.095 (2)0.0277 (17)−0.0455 (16)−0.0652 (18)
N10.065 (2)0.0573 (19)0.0494 (17)0.0004 (15)−0.0156 (15)−0.0175 (14)
N20.0532 (18)0.0560 (18)0.0441 (15)0.0010 (15)−0.0155 (14)−0.0167 (14)
N30.0538 (18)0.0518 (17)0.0472 (16)−0.0010 (15)−0.0170 (14)−0.0110 (14)
C10.100 (3)0.078 (3)0.067 (2)0.013 (2)−0.032 (2)−0.032 (2)
C20.109 (3)0.093 (3)0.056 (2)0.006 (3)−0.041 (2)−0.024 (2)
C30.072 (3)0.075 (3)0.069 (3)−0.006 (2)−0.032 (2)−0.008 (2)
C40.048 (2)0.061 (2)0.048 (2)−0.0069 (19)−0.0186 (18)−0.0063 (18)
C50.057 (2)0.062 (3)0.078 (3)0.007 (2)−0.028 (2)−0.011 (2)
C60.076 (3)0.064 (3)0.087 (3)0.018 (2)−0.032 (2)−0.032 (2)
C70.062 (2)0.062 (2)0.066 (2)0.007 (2)−0.022 (2)−0.023 (2)
C80.043 (2)0.058 (2)0.049 (2)−0.0002 (18)−0.0127 (17)−0.0151 (18)
C90.039 (2)0.052 (2)0.049 (2)−0.0065 (17)−0.0088 (17)−0.0100 (17)
C100.057 (2)0.059 (2)0.057 (2)0.0000 (18)−0.0172 (18)−0.0246 (17)
C110.055 (2)0.058 (2)0.050 (2)−0.0028 (19)−0.0158 (18)−0.0168 (18)
C120.056 (2)0.056 (2)0.047 (2)−0.0072 (19)−0.0125 (18)−0.0154 (18)
C130.050 (2)0.048 (2)0.0437 (19)−0.0044 (17)−0.0084 (17)−0.0136 (16)
C140.051 (2)0.045 (2)0.0432 (19)−0.0037 (17)−0.0080 (17)−0.0161 (16)
C150.050 (2)0.053 (2)0.0426 (19)−0.0046 (17)−0.0089 (17)−0.0161 (17)
C160.053 (2)0.052 (2)0.046 (2)0.0033 (18)−0.0085 (17)−0.0154 (17)
C170.068 (3)0.058 (2)0.059 (2)0.006 (2)−0.013 (2)−0.0263 (19)
C180.069 (3)0.065 (2)0.049 (2)−0.002 (2)−0.0169 (19)−0.0246 (19)
C190.091 (3)0.067 (2)0.061 (2)0.014 (2)−0.028 (2)−0.036 (2)
C200.145 (4)0.072 (3)0.105 (3)0.045 (3)−0.066 (3)−0.053 (2)
C210.136 (4)0.169 (5)0.117 (4)0.050 (4)−0.056 (3)−0.100 (4)

Geometric parameters (Å, °)

O1—C81.378 (3)C6—H6A0.9300
O1—C101.413 (3)C7—C81.366 (4)
O2—C111.230 (3)C7—H70.9300
O3—C151.369 (3)C8—C91.413 (4)
O3—C191.437 (3)C10—C111.497 (4)
O4—C161.366 (3)C10—H10A0.9700
O4—C201.416 (3)C10—H10B0.9700
O5—H210.8500C12—C131.448 (4)
O5—H220.8499C12—H120.9300
O6—C211.369 (4)C13—C181.382 (4)
O6—H60.8200C13—C141.401 (4)
N1—C11.315 (4)C14—C151.366 (4)
N1—C91.359 (3)C14—H140.9300
N2—C111.339 (3)C15—C161.400 (4)
N2—N31.383 (3)C16—C171.368 (4)
N2—H80.8600C17—C181.397 (4)
N3—C121.271 (3)C17—H170.9300
C1—C21.403 (5)C18—H180.9300
C1—H10.9300C19—H19A0.9600
C2—C31.346 (4)C19—H19B0.9600
C2—H20.9300C19—H19C0.9600
C3—C41.403 (4)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C4—C51.408 (4)C20—H20C0.9600
C4—C91.415 (4)C21—H21A0.9600
C5—C61.347 (4)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.407 (4)
C8—O1—C10115.6 (2)O2—C11—N2124.2 (3)
C15—O3—C19116.5 (2)O2—C11—C10117.2 (3)
C16—O4—C20117.6 (2)N2—C11—C10118.7 (3)
H21—O5—H22105.8N3—C12—C13120.9 (3)
C21—O6—H6109.5N3—C12—H12119.5
C1—N1—C9116.9 (3)C13—C12—H12119.5
C11—N2—N3117.4 (3)C18—C13—C14118.3 (3)
C11—N2—H8121.3C18—C13—C12120.5 (3)
N3—N2—H8121.3C14—C13—C12121.1 (3)
C12—N3—N2116.4 (3)C15—C14—C13121.0 (3)
N1—C1—C2124.2 (3)C15—C14—H14119.5
N1—C1—H1117.9C13—C14—H14119.5
C2—C1—H1117.9C14—C15—O3125.0 (3)
C3—C2—C1119.1 (3)C14—C15—C16120.1 (3)
C3—C2—H2120.4O3—C15—C16114.9 (3)
C1—C2—H2120.4O4—C16—C17125.0 (3)
C2—C3—C4119.6 (3)O4—C16—C15115.2 (3)
C2—C3—H3120.2C17—C16—C15119.8 (3)
C4—C3—H3120.2C16—C17—C18120.0 (3)
C3—C4—C5123.1 (3)C16—C17—H17120.0
C3—C4—C9117.3 (3)C18—C17—H17120.0
C5—C4—C9119.6 (3)C13—C18—C17120.8 (3)
C6—C5—C4120.3 (3)C13—C18—H18119.6
C6—C5—H5119.9C17—C18—H18119.6
C4—C5—H5119.9O3—C19—H19A109.5
C5—C6—C7120.9 (3)O3—C19—H19B109.5
C5—C6—H6A119.5H19A—C19—H19B109.5
C7—C6—H6A119.5O3—C19—H19C109.5
C8—C7—C6120.3 (3)H19A—C19—H19C109.5
C8—C7—H7119.9H19B—C19—H19C109.5
C6—C7—H7119.9O4—C20—H20A109.5
C7—C8—O1124.2 (3)O4—C20—H20B109.5
C7—C8—C9120.2 (3)H20A—C20—H20B109.5
O1—C8—C9115.6 (3)O4—C20—H20C109.5
N1—C9—C8118.5 (3)H20A—C20—H20C109.5
N1—C9—C4122.9 (3)H20B—C20—H20C109.5
C8—C9—C4118.6 (3)O6—C21—H21A109.5
O1—C10—C11113.2 (3)O6—C21—H21B109.5
O1—C10—H10A108.9H21A—C21—H21B109.5
C11—C10—H10A108.9O6—C21—H21C109.5
O1—C10—H10B108.9H21A—C21—H21C109.5
C11—C10—H10B108.9H21B—C21—H21C109.5
H10A—C10—H10B107.8

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H8···O10.862.352.698 (3)105
N2—H8···O5i0.862.062.899 (3)165
O6—H6···O20.821.982.756 (4)156
O6—H6···N30.822.583.194 (4)133
O5—H21···N1ii0.852.002.834 (4)168
O5—H22···O6iii0.852.022.847 (4)164

Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5253).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bratzel, M. P., Aaron, J. J., Winefordner, J. D., Schulman, S. G. & Gershon, H. (1972). Anal. Chem. 44, 1240–1245.
  • Karmakar, A., Sarma, R. J. & Baruah, J. B. (2007). CrystEngComm, 9, 379–389.
  • Pierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem. 10, 1077–1084. [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, S.-Y., Yuan, L., Xu, L., Zhang, Z., Diao, Y.-P. & Lv, D.-C. (2009). Acta Cryst. E65, o1154. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography