PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3099–o3100.
Published online 2009 November 14. doi:  10.1107/S1600536809047758
PMCID: PMC2972131

(4-Methyl­phen­yl)[1-(4-methyl­phen­yl)-3-(5-nitro-2-fur­yl)-1H-pyrazol-4-yl]methanone

Abstract

In the title pyrazole compound, C22H17N3O4, an intra­molecular C—H(...)O contact generates a seven-membered ring, producing an S(7) ring motif. The furan and pyrazole rings are essentially planar [maximum deviations = 0.004 (1) and 0.004 (2) Å, respectively] and are almost coplanar, making a dihedral angle of 3.75 (10)°. One of the methyl­phenyl groups is inclined to the pyrazole ring, as indicated by the dihedral angle of 48.41 (9)°. In the crystal structure, mol­ecules are linked into chains along [An external file that holds a picture, illustration, etc.
Object name is e-65-o3099-efi1.jpg10] by C—H(...)O contacts. The crystal structure is further stabilized by π–π inter­actions [centroid–centroid distance = 3.4437 (10) Å].

Related literature

For general background to and applications of the title compound, see: Kalluraya et al. (1994 [triangle]); Rai & Kalluraya (2006 [triangle]); Rai et al. (2008 [triangle]); Sridhar & Perumal (2003 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For a closely related structure, see: Goh et al. (2009 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3099-scheme1.jpg

Experimental

Crystal data

  • C22H17N3O4
  • M r = 387.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3099-efi3.jpg
  • a = 9.6398 (2) Å
  • b = 9.9160 (2) Å
  • c = 10.1815 (2) Å
  • α = 88.051 (1)°
  • β = 85.930 (1)°
  • γ = 70.495 (1)°
  • V = 915.01 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.39 × 0.23 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.963, T max = 0.989
  • 21316 measured reflections
  • 5261 independent reflections
  • 4131 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.144
  • S = 1.08
  • 5261 reflections
  • 264 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL nd PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809047758/tk2571sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047758/tk2571Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Pyrazole derivatives are in general well-known nitrogen-containing heterocyclic compounds and various procedures have been developed for their syntheses (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications, and their widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl-substituted pyrazoles have a sharply pronounced sedative action on the central nervous system. Further, certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal and fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003). In continuation of our studies on 1,3-dipolar cyclo-addition reactions of sydnones with dipolarophiles carrying a nitrofuran or nitrothiophene moiety (Kalluraya et al., 1994), we herein report the synthesis of this new pyrazole possessing 5-nitrofuran nucleus, (I).

In (I), an intramolecular C11—H11A···O2 contact (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Fig. 1, Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of -0.004 (1) and 0.004 (2) Å, respectively, for atoms O1 and C9. These two rings are almost co-planar to one another, making a dihedral angle of 3.75 (10) °. One of the methylbenzene moieties (C1-C6/C21) is inclined to the pyrazole ring, as indicated by the dihedral angle formed between the mean plane through C1-C6/C21 and the C8/C9/N2/N1/C14 pyrazole ring of 48.41 (9) °. The bond lengths and angles observed are comparable to a closely related structure (Goh et al., 2009).

In the crystal structure (Fig. 2), molecules are linked into a 1-D chain along the [110] direction by C14—H14A···O3 contacts (Table 1). The crystal structure is further stabilized by π–π interactions [Cg1···Cg1 = 3.4437 (10) Å; Cg1 is the centroid of the C8/C9/N2/N1/C14 pyrazole ring].

Experimental

3-(p-methylphenyl)sydnone (0.01 mol) and 1-(p-methylphenyl)-3-(5-nitro-2-furyl)-2-propyn-1-one (0.01 mol) were dissolved in dry xylene (10 ml) and refluxed for 4 h. After completion of the reaction, the solvent was removed by distillation under reduced pressure. The crude product obtained was purified by recrystallization from ethanol and DMF mixture. The solid obtained was collected by filtration, washed with ethanol and dried. Single crystals were obtained by by slow evaporation of a DMF and ethanol (1:2) solution of (I).

Refinement

All the hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular C–H···O contact is shown as dashed line.
Fig. 2.
A view of the crystal structure of (I), down the c axis, showing 1-D chains along the [110] direction. Intermolecular C–H···O contacts are shown as dashed lines.

Crystal data

C22H17N3O4Z = 2
Mr = 387.39F(000) = 404
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6398 (2) ÅCell parameters from 9115 reflections
b = 9.9160 (2) Åθ = 2.2–29.9°
c = 10.1815 (2) ŵ = 0.10 mm1
α = 88.051 (1)°T = 100 K
β = 85.930 (1)°Block, orange
γ = 70.495 (1)°0.39 × 0.23 × 0.11 mm
V = 915.01 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5261 independent reflections
Radiation source: fine-focus sealed tube4131 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 29.9°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −13→13
Tmin = 0.963, Tmax = 0.989k = −13→13
21316 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0554P)2 + 0.6909P] where P = (Fo2 + 2Fc2)/3
5261 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.37746 (12)−0.18217 (11)0.54625 (12)0.0192 (3)
O20.27874 (13)0.22439 (13)0.28781 (12)0.0220 (3)
O30.71075 (14)−0.45933 (13)0.52077 (13)0.0275 (3)
O40.51656 (15)−0.43098 (14)0.65457 (15)0.0329 (3)
N1−0.00353 (15)0.13036 (14)0.62991 (13)0.0165 (3)
N20.12266 (15)0.01582 (14)0.61610 (14)0.0173 (3)
N30.58353 (16)−0.39214 (15)0.56224 (15)0.0218 (3)
C1−0.11237 (18)0.36641 (17)0.26082 (16)0.0190 (3)
H1A−0.13980.29240.30040.023*
C2−0.21404 (19)0.47566 (19)0.19334 (17)0.0221 (4)
H2A−0.30880.47270.18700.026*
C3−0.17692 (19)0.58885 (18)0.13536 (17)0.0227 (4)
C4−0.03428 (19)0.59078 (18)0.14428 (17)0.0227 (4)
H4A−0.00790.66630.10670.027*
C50.06906 (19)0.48115 (17)0.20874 (17)0.0206 (3)
H5A0.16470.48270.21210.025*
C60.03091 (18)0.36868 (16)0.26861 (16)0.0171 (3)
C70.15071 (18)0.25230 (16)0.33197 (16)0.0169 (3)
C80.11205 (17)0.17708 (16)0.44824 (16)0.0162 (3)
C90.19410 (17)0.04329 (16)0.50694 (16)0.0160 (3)
C100.33574 (18)−0.06208 (16)0.46636 (16)0.0167 (3)
C110.44312 (18)−0.06981 (17)0.36922 (16)0.0202 (3)
H11A0.4408−0.00240.30290.024*
C120.55914 (19)−0.20056 (17)0.38871 (17)0.0209 (3)
H12A0.6478−0.23650.33860.025*
C130.51276 (18)−0.26116 (16)0.49567 (17)0.0192 (3)
C14−0.01294 (18)0.22782 (16)0.53221 (16)0.0170 (3)
H14A−0.08970.31370.52300.020*
C15−0.10373 (17)0.13658 (16)0.74182 (16)0.0164 (3)
C16−0.07593 (19)0.02085 (18)0.82857 (17)0.0216 (3)
H16A0.0039−0.06190.81150.026*
C17−0.1685 (2)0.03015 (19)0.94092 (18)0.0246 (4)
H17A−0.1504−0.04820.99800.029*
C18−0.28747 (19)0.1528 (2)0.97094 (17)0.0227 (4)
C19−0.31491 (19)0.26609 (18)0.88030 (17)0.0225 (4)
H19A−0.39480.34880.89730.027*
C20−0.22600 (18)0.25837 (17)0.76544 (17)0.0194 (3)
H20A−0.24800.33380.70500.023*
C21−0.2876 (2)0.7069 (2)0.0625 (2)0.0360 (5)
H21A−0.28590.79790.09000.054*
H21B−0.38440.70110.08160.054*
H21C−0.26280.6967−0.03050.054*
C22−0.3809 (2)0.1612 (2)1.09795 (19)0.0325 (5)
H22A−0.31830.12061.16850.049*
H22B−0.44750.10891.08940.049*
H22C−0.43630.25951.11670.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0163 (6)0.0132 (5)0.0240 (6)0.0000 (4)0.0004 (4)0.0034 (4)
O20.0183 (6)0.0197 (6)0.0252 (6)−0.0038 (5)0.0025 (5)0.0048 (5)
O30.0230 (6)0.0198 (6)0.0288 (7)0.0067 (5)0.0010 (5)−0.0002 (5)
O40.0273 (7)0.0218 (6)0.0426 (8)−0.0017 (5)0.0048 (6)0.0128 (6)
N10.0154 (6)0.0126 (6)0.0187 (7)−0.0015 (5)0.0008 (5)0.0015 (5)
N20.0149 (6)0.0121 (6)0.0216 (7)−0.0004 (5)−0.0003 (5)0.0007 (5)
N30.0208 (7)0.0152 (6)0.0251 (8)−0.0003 (5)−0.0016 (6)0.0004 (5)
C10.0196 (8)0.0170 (7)0.0191 (8)−0.0052 (6)0.0016 (6)0.0035 (6)
C20.0166 (8)0.0251 (8)0.0218 (8)−0.0040 (6)−0.0001 (6)0.0048 (7)
C30.0198 (8)0.0226 (8)0.0198 (8)−0.0003 (6)0.0008 (6)0.0064 (6)
C40.0242 (8)0.0173 (7)0.0246 (9)−0.0053 (6)−0.0002 (7)0.0069 (6)
C50.0206 (8)0.0179 (7)0.0223 (8)−0.0055 (6)−0.0013 (6)0.0029 (6)
C60.0184 (7)0.0138 (7)0.0169 (7)−0.0028 (6)−0.0004 (6)0.0016 (6)
C70.0192 (8)0.0134 (7)0.0172 (7)−0.0045 (6)0.0001 (6)0.0019 (6)
C80.0163 (7)0.0122 (6)0.0186 (8)−0.0029 (5)−0.0015 (6)0.0015 (5)
C90.0169 (7)0.0122 (6)0.0176 (7)−0.0032 (5)−0.0009 (6)0.0011 (5)
C100.0177 (7)0.0117 (6)0.0191 (8)−0.0028 (6)−0.0029 (6)0.0013 (5)
C110.0210 (8)0.0165 (7)0.0186 (8)−0.0007 (6)−0.0006 (6)0.0014 (6)
C120.0187 (8)0.0182 (7)0.0205 (8)0.0008 (6)0.0002 (6)−0.0023 (6)
C130.0168 (8)0.0138 (7)0.0223 (8)0.0010 (6)−0.0009 (6)−0.0005 (6)
C140.0175 (7)0.0126 (6)0.0189 (8)−0.0024 (6)−0.0010 (6)0.0023 (5)
C150.0159 (7)0.0155 (7)0.0174 (7)−0.0048 (6)−0.0003 (6)0.0001 (6)
C160.0211 (8)0.0176 (7)0.0227 (8)−0.0026 (6)−0.0003 (6)0.0037 (6)
C170.0242 (9)0.0257 (8)0.0226 (9)−0.0077 (7)−0.0009 (7)0.0079 (7)
C180.0197 (8)0.0304 (9)0.0183 (8)−0.0090 (7)0.0004 (6)0.0013 (7)
C190.0174 (8)0.0221 (8)0.0251 (9)−0.0032 (6)0.0017 (6)−0.0015 (7)
C200.0182 (8)0.0152 (7)0.0229 (8)−0.0036 (6)0.0004 (6)0.0028 (6)
C210.0218 (9)0.0388 (11)0.0377 (11)0.0001 (8)0.0009 (8)0.0226 (9)
C220.0253 (10)0.0465 (12)0.0210 (9)−0.0070 (8)0.0033 (7)0.0053 (8)

Geometric parameters (Å, °)

O1—C131.3526 (18)C9—C101.457 (2)
O1—C101.3792 (18)C10—C111.365 (2)
O2—C71.2262 (19)C11—C121.420 (2)
O3—N31.2354 (18)C11—H11A0.9300
O4—N31.2264 (19)C12—C131.346 (2)
N1—C141.349 (2)C12—H12A0.9300
N1—N21.3614 (17)C14—H14A0.9300
N1—C151.430 (2)C15—C161.389 (2)
N2—C91.334 (2)C15—C201.391 (2)
N3—C131.423 (2)C16—C171.386 (2)
C1—C21.394 (2)C16—H16A0.9300
C1—C61.397 (2)C17—C181.390 (2)
C1—H1A0.9300C17—H17A0.9300
C2—C31.389 (2)C18—C191.396 (2)
C2—H2A0.9300C18—C221.511 (2)
C3—C41.391 (3)C19—C201.389 (2)
C3—C211.509 (2)C19—H19A0.9300
C4—C51.388 (2)C20—H20A0.9300
C4—H4A0.9300C21—H21A0.9600
C5—C61.395 (2)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—C71.499 (2)C22—H22A0.9600
C7—C81.470 (2)C22—H22B0.9600
C8—C141.383 (2)C22—H22C0.9600
C8—C91.434 (2)
C13—O1—C10104.73 (12)C12—C11—H11A126.6
C14—N1—N2112.14 (13)C13—C12—C11104.92 (14)
C14—N1—C15128.60 (13)C13—C12—H12A127.5
N2—N1—C15119.22 (13)C11—C12—H12A127.5
C9—N2—N1105.09 (12)C12—C13—O1113.27 (14)
O4—N3—O3124.62 (14)C12—C13—N3130.32 (15)
O4—N3—C13119.26 (14)O1—C13—N3116.41 (14)
O3—N3—C13116.12 (14)N1—C14—C8107.72 (13)
C2—C1—C6119.62 (15)N1—C14—H14A126.1
C2—C1—H1A120.2C8—C14—H14A126.1
C6—C1—H1A120.2C16—C15—C20120.22 (15)
C3—C2—C1121.40 (16)C16—C15—N1119.28 (14)
C3—C2—H2A119.3C20—C15—N1120.49 (14)
C1—C2—H2A119.3C17—C16—C15119.23 (15)
C2—C3—C4118.62 (15)C17—C16—H16A120.4
C2—C3—C21121.14 (17)C15—C16—H16A120.4
C4—C3—C21120.24 (16)C16—C17—C18122.08 (16)
C5—C4—C3120.63 (16)C16—C17—H17A119.0
C5—C4—H4A119.7C18—C17—H17A119.0
C3—C4—H4A119.7C17—C18—C19117.40 (16)
C4—C5—C6120.65 (16)C17—C18—C22120.35 (16)
C4—C5—H5A119.7C19—C18—C22122.25 (16)
C6—C5—H5A119.7C20—C19—C18121.69 (15)
C5—C6—C1119.07 (15)C20—C19—H19A119.2
C5—C6—C7117.08 (15)C18—C19—H19A119.2
C1—C6—C7123.77 (14)C19—C20—C15119.28 (15)
O2—C7—C8121.55 (14)C19—C20—H20A120.4
O2—C7—C6119.45 (14)C15—C20—H20A120.4
C8—C7—C6118.98 (14)C3—C21—H21A109.5
C14—C8—C9103.84 (13)C3—C21—H21B109.5
C14—C8—C7126.10 (14)H21A—C21—H21B109.5
C9—C8—C7129.94 (14)C3—C21—H21C109.5
N2—C9—C8111.20 (13)H21A—C21—H21C109.5
N2—C9—C10117.80 (13)H21B—C21—H21C109.5
C8—C9—C10131.00 (15)C18—C22—H22A109.5
C11—C10—O1110.18 (13)C18—C22—H22B109.5
C11—C10—C9135.41 (15)H22A—C22—H22B109.5
O1—C10—C9114.36 (13)C18—C22—H22C109.5
C10—C11—C12106.90 (14)H22A—C22—H22C109.5
C10—C11—H11A126.6H22B—C22—H22C109.5
C14—N1—N2—C90.31 (18)C8—C9—C10—O1−177.61 (16)
C15—N1—N2—C9−177.78 (14)O1—C10—C11—C12−0.40 (19)
C6—C1—C2—C3−1.2 (3)C9—C10—C11—C12176.65 (19)
C1—C2—C3—C40.8 (3)C10—C11—C12—C130.0 (2)
C1—C2—C3—C21−179.96 (17)C11—C12—C13—O10.4 (2)
C2—C3—C4—C50.6 (3)C11—C12—C13—N3−179.11 (18)
C21—C3—C4—C5−178.65 (17)C10—O1—C13—C12−0.66 (19)
C3—C4—C5—C6−1.6 (3)C10—O1—C13—N3178.94 (14)
C4—C5—C6—C11.1 (2)O4—N3—C13—C12−175.80 (19)
C4—C5—C6—C7177.95 (15)O3—N3—C13—C124.0 (3)
C2—C1—C6—C50.2 (2)O4—N3—C13—O14.7 (2)
C2—C1—C6—C7−176.34 (15)O3—N3—C13—O1−175.53 (15)
C5—C6—C7—O2−29.8 (2)N2—N1—C14—C80.17 (19)
C1—C6—C7—O2146.86 (17)C15—N1—C14—C8178.05 (15)
C5—C6—C7—C8148.48 (16)C9—C8—C14—N1−0.54 (18)
C1—C6—C7—C8−34.9 (2)C7—C8—C14—N1−176.89 (15)
O2—C7—C8—C14156.53 (17)C14—N1—C15—C16177.34 (17)
C6—C7—C8—C14−21.7 (3)N2—N1—C15—C16−4.9 (2)
O2—C7—C8—C9−18.8 (3)C14—N1—C15—C20−4.1 (3)
C6—C7—C8—C9162.94 (16)N2—N1—C15—C20173.63 (15)
N1—N2—C9—C8−0.67 (18)C20—C15—C16—C17−2.2 (3)
N1—N2—C9—C10179.90 (14)N1—C15—C16—C17176.38 (16)
C14—C8—C9—N20.77 (19)C15—C16—C17—C18−1.0 (3)
C7—C8—C9—N2176.92 (16)C16—C17—C18—C192.6 (3)
C14—C8—C9—C10−179.89 (17)C16—C17—C18—C22−176.83 (18)
C7—C8—C9—C10−3.7 (3)C17—C18—C19—C20−1.0 (3)
C13—O1—C10—C110.64 (18)C22—C18—C19—C20178.38 (18)
C13—O1—C10—C9−177.09 (14)C18—C19—C20—C15−2.0 (3)
N2—C9—C10—C11−175.27 (19)C16—C15—C20—C193.7 (3)
C8—C9—C10—C115.4 (3)N1—C15—C20—C19−174.87 (16)
N2—C9—C10—O11.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.282.940 (2)128
C14—H14A···O3i0.932.423.352 (2)175

Symmetry codes: (i) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2571).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009). Acta Cryst. E65, o3088–o3089. [PMC free article] [PubMed]
  • Kalluraya, B., D’Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.
  • Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.
  • Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography