PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): o3224.
Published online 2009 November 28. doi:  10.1107/S1600536809050363
PMCID: PMC2972123

Benzhydryl phenyl sulfone

Abstract

In the title compound, C19H16O2S, the sulfur-bound phenyl group is approximately parallel to one of the two phenyl rings of the benzhydryl group, making a dihedral angle of 12.53 (10)°, and forms a dihedral angle of 41.25 (9)° with the other phenyl ring. In the crystal, weak C—H(...)O inter­actions form a two-dimensional network propagating along the bc plane.

Related literature

For background to the sulfone anion, see: da Silva Corrêa et al. (1968 [triangle]); Mayr et al. (2001 [triangle], 2008 [triangle]). For a related structure, see: Li et al. (2005 [triangle]). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o3224-scheme1.jpg

Experimental

Crystal data

  • C19H16O2S
  • M r = 308.40
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o3224-efi1.jpg
  • a = 16.3250 (4) Å
  • b = 5.7979 (1) Å
  • c = 16.4983 (4) Å
  • V = 1561.58 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 200 K
  • 0.20 × 0.10 × 0.09 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 11675 measured reflections
  • 3499 independent reflections
  • 3136 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.075
  • S = 1.04
  • 3499 reflections
  • 199 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.28 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1646 Friedel pairs
  • Flack parameter: −0.03 (6)

Data collection: COLLECT (Hooft, 2004 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809050363/ds2011sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809050363/ds2011Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Peter Klüfers for generous allocation of diffractometer time.

supplementary crystallographic information

Comment

During our studies on the ambident reactivity of the phenylsulfinate anion we used diarylcarbenium ions (Ar2CH+) as reference electrophiles [Mayr et al. (2001, 2008)] and, hence, obtained the title compound from a reaction of sodium benzenesulfinate with benzhydryl chloride (Ph2CHCl) in dimethyl sulfoxide.

The asymmetric unit of the title compound contains one complete molecule, which is shown in Figure 1. The sulfur-bound phenyl group is approximately parallel to one of the two phenyl rings of the benzhydryl group with an dihedral angle of 12.53 (10)°. The other one forms a dihedral angle of 41.25 (9)° with the phenyl group bound to the sulfur atom.

Three weak C–H···O interactions are found (Table 1) which lead to the formation of a two-dimensional network that propagates along the bc plane (Fig. 2). Contacts of this type have been described for a structure of a related sulfone [Li et al. (2005)]. In terms of graph-set analysis [Bernstein et al. (1995), Etter et al. (1990)], the descriptors on the unitary level are C11(4) for the H1···O2 interaction, C11(6) for the H7···O2 interaction, and C11(7) for the H4···O1 interaction.

Experimental

Benzhydryl Phenyl Sulfone was obtained by heating a mixture of sodium benzenesulfinate (0.21 g, 1.3 mmol) and benzhydryl chloride (0.26 g, 1.3 mmol) in DMSO at 70 °C. After completion of the reaction (4 h), the reaction mixture was cooled to room temperature, diluted with water, and extracted with ethyl acetate. The organic phase was washed several times with water and dried (MgSO4). A viscous oil was obtained after evaporation of the solvent under reduced pressure that solidified on standing. After column chromatography (silica gel, isohexane/EtOAc = 9/1), benzhydryl phenyl sulfone was isolated as colorless solid (0.33 g, 82%). A small amount of the title compound was dissolved in ethyl acetate. The solvent was allowed to evaporate slowly at room temperature. After 2 days crystals had formed that were suitable for X-ray analysis. mp 189 °C (186–187 °C [da Silva Corrêa et al. (1968)]).

Refinement

All H atoms were found in difference maps. C-bonded H atoms were positioned geometrically (C—H = 1.00 Å for aliphatic, 0.95 Å for aromatic H) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
Weak intermolecular hydrogen bonds of the type C–H···O leading to a two-dimensional network that propagates along the bc plane (viewing direction approximately along [110]). Color scheme for dashed lines: blue: H1···O2 ...

Crystal data

C19H16O2SF(000) = 648
Mr = 308.40Dx = 1.312 (1) Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 6504 reflections
a = 16.3250 (4) Åθ = 3.1–27.5°
b = 5.7979 (1) ŵ = 0.21 mm1
c = 16.4983 (4) ÅT = 200 K
V = 1561.58 (6) Å3Rod, colourless
Z = 40.20 × 0.10 × 0.09 mm

Data collection

Nonius KappaCCD diffractometer3136 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.027
MONTEL, graded multilayered X-ray opticsθmax = 27.5°, θmin = 3.5°
Detector resolution: 9 pixels mm-1h = −21→21
CCD; rotation images; thick slices, phi/ω–scank = −7→6
11675 measured reflectionsl = −21→20
3499 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.075w = 1/[σ2(Fo2) + (0.0396P)2 + 0.2163P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3499 reflectionsΔρmax = 0.14 e Å3
199 parametersΔρmin = −0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 1646 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.06340 (2)0.12898 (6)0.26302 (3)0.02887 (10)
O10.08669 (8)0.1945 (2)0.34378 (7)0.0408 (3)
O20.03981 (7)−0.10715 (19)0.24877 (8)0.0384 (3)
C1−0.01788 (10)0.3229 (3)0.23092 (10)0.0276 (3)
H10.00340.48200.24090.033*
C2−0.03155 (9)0.3073 (3)0.14009 (10)0.0272 (3)
C3−0.06491 (11)0.1160 (3)0.10143 (11)0.0347 (4)
H3−0.0816−0.01390.13240.042*
C4−0.07391 (11)0.1141 (3)0.01781 (12)0.0405 (4)
H4−0.0964−0.0180−0.00800.049*
C5−0.05082 (12)0.2999 (4)−0.02807 (12)0.0428 (4)
H5−0.05760.2970−0.08530.051*
C6−0.01740 (12)0.4927 (4)0.00955 (13)0.0451 (5)
H6−0.00080.6218−0.02180.054*
C7−0.00847 (11)0.4955 (3)0.09276 (11)0.0363 (4)
H70.01380.62830.11820.044*
C8−0.09145 (10)0.2969 (3)0.28610 (9)0.0304 (4)
C9−0.14154 (12)0.1021 (3)0.28814 (12)0.0431 (4)
H9−0.1290−0.02740.25510.052*
C10−0.20970 (13)0.0971 (4)0.33832 (13)0.0500 (5)
H10−0.2444−0.03430.33830.060*
C11−0.22748 (13)0.2805 (4)0.38811 (13)0.0531 (5)
H11−0.27400.27510.42270.064*
C12−0.17763 (14)0.4719 (4)0.38771 (14)0.0547 (5)
H12−0.18950.59850.42230.066*
C13−0.10994 (12)0.4802 (3)0.33668 (11)0.0406 (4)
H13−0.07600.61330.33650.049*
C140.14411 (10)0.2005 (3)0.19613 (10)0.0292 (3)
C150.18653 (11)0.4044 (3)0.20890 (12)0.0407 (4)
H150.17390.50020.25390.049*
C160.24784 (12)0.4662 (3)0.15468 (14)0.0479 (5)
H160.27750.60550.16230.057*
C170.26549 (12)0.3259 (4)0.09010 (13)0.0503 (5)
H170.30750.36910.05320.060*
C180.22315 (13)0.1231 (4)0.07798 (14)0.0517 (5)
H180.23640.02670.03330.062*
C190.16122 (12)0.0598 (3)0.13093 (12)0.0403 (4)
H190.1311−0.07820.12240.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.03180 (18)0.02898 (18)0.02584 (18)0.00027 (14)−0.00044 (18)0.00176 (17)
O10.0447 (7)0.0530 (8)0.0247 (6)0.0025 (6)−0.0042 (5)0.0005 (5)
O20.0408 (6)0.0273 (6)0.0471 (9)−0.0006 (4)0.0029 (6)0.0047 (5)
C10.0315 (8)0.0251 (8)0.0263 (8)−0.0019 (6)0.0000 (7)−0.0014 (6)
C20.0257 (7)0.0301 (8)0.0258 (8)0.0028 (6)0.0008 (6)0.0011 (6)
C30.0384 (9)0.0357 (9)0.0301 (9)−0.0062 (7)−0.0017 (7)−0.0001 (7)
C40.0394 (9)0.0507 (11)0.0312 (10)−0.0053 (8)−0.0032 (8)−0.0060 (8)
C50.0423 (10)0.0597 (12)0.0262 (9)0.0046 (9)−0.0005 (8)0.0006 (8)
C60.0561 (13)0.0471 (11)0.0321 (9)0.0014 (9)0.0063 (9)0.0098 (7)
C70.0440 (10)0.0316 (9)0.0334 (9)−0.0002 (7)0.0045 (7)0.0013 (7)
C80.0327 (8)0.0324 (8)0.0261 (9)0.0015 (6)−0.0017 (6)0.0028 (6)
C90.0433 (10)0.0450 (11)0.0410 (11)−0.0093 (8)0.0040 (8)−0.0017 (8)
C100.0403 (10)0.0638 (13)0.0460 (12)−0.0138 (9)0.0040 (9)0.0146 (10)
C110.0409 (10)0.0738 (14)0.0445 (12)0.0098 (10)0.0133 (9)0.0159 (11)
C120.0575 (13)0.0597 (13)0.0470 (12)0.0113 (10)0.0174 (10)−0.0022 (10)
C130.0465 (10)0.0412 (10)0.0340 (10)0.0044 (8)0.0048 (8)−0.0049 (8)
C140.0270 (8)0.0333 (8)0.0273 (8)0.0008 (6)−0.0026 (7)0.0016 (7)
C150.0384 (10)0.0429 (10)0.0409 (11)−0.0064 (8)−0.0044 (8)−0.0039 (8)
C160.0340 (9)0.0507 (11)0.0589 (13)−0.0111 (9)−0.0065 (9)0.0088 (10)
C170.0320 (9)0.0683 (13)0.0505 (12)0.0027 (9)0.0089 (9)0.0144 (10)
C180.0466 (11)0.0625 (13)0.0459 (12)0.0048 (9)0.0128 (10)−0.0074 (10)
C190.0402 (9)0.0394 (9)0.0414 (11)0.0016 (8)0.0045 (8)−0.0056 (8)

Geometric parameters (Å, °)

S1—O11.4366 (13)C9—C101.387 (3)
S1—O21.4415 (12)C9—H90.9500
S1—C141.7681 (17)C10—C111.374 (3)
S1—C11.8180 (16)C10—H100.9500
C1—C81.514 (2)C11—C121.376 (3)
C1—C21.518 (2)C11—H110.9500
C1—H11.0000C12—C131.390 (3)
C2—C31.390 (2)C12—H120.9500
C2—C71.394 (2)C13—H130.9500
C3—C41.387 (3)C14—C191.379 (2)
C3—H30.9500C14—C151.386 (2)
C4—C51.369 (3)C15—C161.389 (3)
C4—H40.9500C15—H150.9500
C5—C61.390 (3)C16—C171.371 (3)
C5—H50.9500C16—H160.9500
C6—C71.381 (3)C17—C181.378 (3)
C6—H60.9500C17—H170.9500
C7—H70.9500C18—C191.386 (3)
C8—C131.385 (2)C18—H180.9500
C8—C91.395 (3)C19—H190.9500
O1—S1—O2118.23 (7)C10—C9—C8120.08 (19)
O1—S1—C14108.64 (8)C10—C9—H9120.0
O2—S1—C14108.67 (8)C8—C9—H9120.0
O1—S1—C1107.45 (8)C11—C10—C9120.67 (19)
O2—S1—C1110.16 (7)C11—C10—H10119.7
C14—S1—C1102.53 (8)C9—C10—H10119.7
C8—C1—C2118.10 (14)C10—C11—C12119.74 (19)
C8—C1—S1110.02 (11)C10—C11—H11120.1
C2—C1—S1110.99 (11)C12—C11—H11120.1
C8—C1—H1105.6C11—C12—C13120.05 (19)
C2—C1—H1105.6C11—C12—H12120.0
S1—C1—H1105.6C13—C12—H12120.0
C3—C2—C7118.25 (15)C8—C13—C12120.79 (18)
C3—C2—C1123.92 (15)C8—C13—H13119.6
C7—C2—C1117.83 (14)C12—C13—H13119.6
C4—C3—C2120.27 (16)C19—C14—C15121.46 (17)
C4—C3—H3119.9C19—C14—S1119.94 (13)
C2—C3—H3119.9C15—C14—S1118.53 (13)
C5—C4—C3120.94 (18)C14—C15—C16118.82 (18)
C5—C4—H4119.5C14—C15—H15120.6
C3—C4—H4119.5C16—C15—H15120.6
C4—C5—C6119.59 (18)C17—C16—C15119.91 (18)
C4—C5—H5120.2C17—C16—H16120.0
C6—C5—H5120.2C15—C16—H16120.0
C7—C6—C5119.67 (18)C16—C17—C18120.89 (19)
C7—C6—H6120.2C16—C17—H17119.6
C5—C6—H6120.2C18—C17—H17119.6
C6—C7—C2121.27 (17)C17—C18—C19120.03 (19)
C6—C7—H7119.4C17—C18—H18120.0
C2—C7—H7119.4C19—C18—H18120.0
C13—C8—C9118.64 (17)C14—C19—C18118.88 (18)
C13—C8—C1117.33 (15)C14—C19—H19120.6
C9—C8—C1124.03 (15)C18—C19—H19120.6
O1—S1—C1—C8−61.76 (13)C13—C8—C9—C101.9 (3)
O2—S1—C1—C868.31 (13)C1—C8—C9—C10−177.35 (17)
C14—S1—C1—C8−176.16 (11)C8—C9—C10—C11−1.8 (3)
O1—S1—C1—C2165.65 (11)C9—C10—C11—C120.6 (3)
O2—S1—C1—C2−64.28 (13)C10—C11—C12—C130.5 (3)
C14—S1—C1—C251.25 (12)C9—C8—C13—C12−0.9 (3)
C8—C1—C2—C3−59.0 (2)C1—C8—C13—C12178.46 (18)
S1—C1—C2—C369.33 (18)C11—C12—C13—C8−0.3 (3)
C8—C1—C2—C7121.61 (17)O1—S1—C14—C19144.32 (14)
S1—C1—C2—C7−110.03 (15)O2—S1—C14—C1914.45 (16)
C7—C2—C3—C40.6 (3)C1—S1—C14—C19−102.16 (15)
C1—C2—C3—C4−178.76 (17)O1—S1—C14—C15−38.52 (16)
C2—C3—C4—C5−0.5 (3)O2—S1—C14—C15−168.39 (13)
C3—C4—C5—C60.4 (3)C1—S1—C14—C1575.01 (15)
C4—C5—C6—C7−0.5 (3)C19—C14—C15—C16−0.3 (3)
C5—C6—C7—C20.7 (3)S1—C14—C15—C16−177.45 (15)
C3—C2—C7—C6−0.7 (3)C14—C15—C16—C17−0.2 (3)
C1—C2—C7—C6178.68 (17)C15—C16—C17—C180.0 (3)
C2—C1—C8—C13−120.05 (16)C16—C17—C18—C190.7 (3)
S1—C1—C8—C13111.14 (15)C15—C14—C19—C181.0 (3)
C2—C1—C8—C959.2 (2)S1—C14—C19—C18178.09 (15)
S1—C1—C8—C9−69.59 (19)C17—C18—C19—C14−1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O2i1.002.463.449 (2)171
C4—H4···O1ii0.952.663.390 (2)134
C7—H7···O2i0.952.683.543 (2)152

Symmetry codes: (i) x, y+1, z; (ii) −x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2011).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.
  • Li, Y.-S. & Su, W.-K. (2005). Acta Cryst. E61, o2450–o2451.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Mayr, H., Bug, T., Gotta, M. F., Hering, N., Irrgang, B., Janker, B., Kempf, B., Loos, R., Ofial, A. R., Remennikov, G. & Schimmel, H. (2001). J. Am. Chem. Soc. 123, 9500–9512. [PubMed]
  • Mayr, H. & Ofial, A. R. (2008). J. Phys. Org. Chem. 21, 584–595.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva Corrêa, C. M. M. da, Lindsay, A. S. & Waters, W. A. (1968). J. Chem. Soc C., pp. 1872–1874.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography