PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 December 1; 65(Pt 12): m1591.
Published online 2009 November 18. doi:  10.1107/S1600536809047485
PMCID: PMC2972118

Methanol{2-meth­oxy-6-[(2-oxidoprop­yl)imino­meth­yl]phenolato}dioxidomolyb­denum(VI)

Abstract

In the structure of the title compound, [Mo(C11H13NO3)O2(CH3OH)], the MoVI ion is octahedrally coordinated by two oxide O atoms, the N atom and two deprotonated OH groups of the tridentate Schiff base ligand 2-meth­oxy-6-[(2-oxidoprop­yl)imino­meth­yl]phenolate and by a methanol O atom. In the crystal structure, two complexes are linked via O—H(...)O hydrogen bonds, yielding a centrosymmetric arrangement involving the methanol hydr­oxy group and one of the ligand O atoms coordinated to the MoVI ion.

Related literature

For molybdenum (VI) Schiff base complexes in bioinorganic chemistry, see: Holm et al. (1996 [triangle]) and as oxidation catalysts, see: Arnaiz et al. (2000 [triangle]); Sheikhshoaie et al. (2009 [triangle]). For similar structures, see: Abbasi et al. (2008 [triangle]); Monadi et al. (2009 [triangle]); Syamal & Maurya (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1591-scheme1.jpg

Experimental

Crystal data

  • [Mo(C11H13NO3)O2(CH4O)]
  • M r = 367.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1591-efi1.jpg
  • a = 6.7551 (5) Å
  • b = 15.8357 (14) Å
  • c = 13.1198 (10) Å
  • β = 98.287 (9)°
  • V = 1388.79 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 173 K
  • 0.38 × 0.38 × 0.34 mm

Data collection

  • Stoe IPDS diffractometer
  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009 [triangle]) T min = 0.625, T max = 0.716
  • 10555 measured reflections
  • 2666 independent reflections
  • 2601 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.063
  • S = 1.16
  • 2666 reflections
  • 187 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000 [triangle]); cell refinement: CELL in IPDS-I; data reduction: INTEGRATE in IPDS-I; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809047485/fi2093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809047485/fi2093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Various molybdenum(VI) Schiff base complexes have been studied due to their importance in the domains of bioinorganic chemistry (Holm et al., (1996), analytical chemistry, oxidation catalyst (Arnaiz et al., 2000; Sheikhshoaie et al., 2009) and structural chemistry (Abbasi et al., 2008; Monadi et al., 2009; Syamal & Maurya, 1989). In continuation of our interest in this line of research we have prepared the title compound, synthesized by the reaction of MoO2(acac)2 and the Schiff base ligand 2-[(2-hydroxy-propylimino)-methyl]-phenol in methanol.

The molecular structure of the title compound is illustrated in Fig. 1 and geometrical parameters are available in the supplementary material as well as in the deposited CIF. The molybdenum atom, Mo1, has a distorted octahedral coordination, being coordinated by the N and two O-atoms of the tridentate Schiff base ligand (N1, O1 and O2), two oxido O-atoms (O4 and O5), and by the O-atom (O6) of the coordinating methanol molecule. The Mo—O and Mo—N bond distances are similar to those reported for the molybdenum (VI) Schiff base complex, {1,1'-[(2,2-Dimethylpropane-1,3-diyl)bis(nitrilomethylidyne)] di-2-naphtholato}dioxidomolybdenum(VI) dichloromethane 1.75-solvate, (Monadi et al., 2009).

In the crystal, complexes are linked via hydrogen bonds, O6—H6O···O1i [symmetry operation (i) = -x, -y, -z], involving the methanol hydroxy group and a ligand O-atom coordinating to the second Mo atom so forming centrosymmetric dimers (Table 1 and Fig. 2).

Experimental

The title compound was prepared by adding MoO2(acac)2 (0.327 g) to a dry methanolic solution (30 ml) of 2-[(2-hydroxy-propylimino)-methyl]-phenol (0.209 g); a 1:1 equimolar ratio. The mixture was then refluxed for 5 h. On cooling a yellow crystalline powder formed, which were filtered off. Crystals of the title complex, suitable for X-ray analysis, were obtained as yellow blocks by slow evaporation at room temperature of a solution in methanol.

Refinement

The OH H-atom was located in a difference electron-density map and refined with a distance restraint of 0.84 (2) Å and Uiso(H) = 1.5Ueq(parent O-atom). The remaining H atoms could all be located from difference electron-density maps but were included in calculated positions and treated as riding atoms: C—H = 0.95 - 1.00 Å, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for CH and CH2 H-atoms, and 1.5 for CH3 H-atoms.

Figures

Fig. 1.
The molecular structure structure of the title compound, showing the numbering scheme and the thermal ellipsoids drawn at the 50% probability level.
Fig. 2.
A view along the a axis of the crystal packing of the title compound, showing the formation of the O-H···O hydrogen bonded dimers [hydrogen bonds are shown as pale blue lines; H-atoms not involved in hydrogen bonding have been ...

Crystal data

[Mo(C11H13NO3)O2(CH4O)]F(000) = 744
Mr = 367.21Dx = 1.756 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 6.7551 (5) Åθ = 2.0–26.1°
b = 15.8357 (14) ŵ = 0.97 mm1
c = 13.1198 (10) ÅT = 173 K
β = 98.287 (9)°Block, yellow
V = 1388.79 (19) Å30.38 × 0.38 × 0.34 mm
Z = 4

Data collection

Stoe IPDS diffractometer2666 independent reflections
Radiation source: fine-focus sealed tube2601 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] rotation scansθmax = 25.9°, θmin = 2.6°
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009)h = −7→8
Tmin = 0.625, Tmax = 0.716k = −19→19
10555 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.16w = 1/[σ2(Fo2) + (0.0288P)2 + 1.2212P] where P = (Fo2 + 2Fc2)/3
2666 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = −0.59 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. The OH H-atom was located in a difference electron-density map and refined with a distance constraint of 0.84 (2) Å and Uiso(H) = 1.5Ueq(parent O-atom). The remainder of the H-atoms could all be located from difference electron-density maps but were included in calculated positions and treated as riding atoms: C—H = 0.95 - 1.00 Å, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for CH and CH2 H-atoms, and 1.5 for methyl H-atoms. Using the Stoe IPDS1, one-circle image plate diffraction system, it is often only possible to access 94% maximum of the Ewald sphere depending on the crystal system and the position of the crystal. Here however, 98% of the data were accessible out to 25° in θ.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo10.03631 (2)0.11249 (1)0.15344 (1)0.0156 (1)
O10.0326 (2)0.12028 (9)0.00507 (12)0.0197 (4)
O20.1700 (2)0.08957 (10)0.29193 (11)0.0210 (4)
O30.1839 (2)0.06916 (11)0.48988 (12)0.0289 (5)
O4−0.0341 (2)0.21363 (10)0.17290 (12)0.0236 (4)
O5−0.1751 (2)0.05346 (10)0.15022 (12)0.0228 (4)
O60.1883 (2)−0.01628 (10)0.12101 (12)0.0238 (5)
N10.3526 (3)0.14577 (12)0.13382 (14)0.0202 (5)
C10.1774 (3)0.17293 (15)−0.03365 (18)0.0261 (6)
C20.3783 (3)0.14935 (16)0.02534 (17)0.0270 (7)
C30.5000 (3)0.16301 (13)0.20319 (17)0.0203 (6)
C40.4983 (3)0.15205 (13)0.31189 (17)0.0200 (6)
C50.6718 (3)0.17449 (15)0.37898 (19)0.0263 (7)
C60.6822 (3)0.16196 (17)0.48262 (19)0.0319 (7)
C70.5213 (4)0.12683 (16)0.52236 (19)0.0294 (7)
C80.3482 (3)0.10346 (14)0.45824 (18)0.0223 (6)
C90.3363 (3)0.11557 (12)0.35135 (17)0.0189 (6)
C100.1682 (4)0.16163 (15)−0.14788 (18)0.0272 (7)
C110.1874 (4)0.05673 (19)0.59784 (18)0.0359 (8)
C120.3293 (4)−0.06281 (18)0.1874 (2)0.0387 (8)
H10.148300.23330−0.019000.0310*
H2A0.422200.093800.002100.0320*
H2B0.480100.192200.014600.0320*
H30.618500.184500.181500.0240*
H50.782400.198500.352100.0320*
H60.799800.177300.527600.0380*
H6O0.117 (4)−0.0505 (16)0.084 (2)0.0360*
H70.529700.118600.594600.0350*
H10A0.038000.18110−0.182700.0410*
H10B0.185500.10180−0.163400.0410*
H10C0.274900.19470−0.172100.0410*
H11A0.204600.111300.633300.0540*
H11B0.298900.019400.624000.0540*
H11C0.061200.031000.610400.0540*
H12A0.27690−0.073900.252000.0580*
H12B0.45390−0.030500.201900.0580*
H12C0.35560−0.116500.154800.0580*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.0105 (1)0.0213 (1)0.0142 (1)−0.0008 (1)−0.0009 (1)−0.0025 (1)
O10.0183 (7)0.0248 (8)0.0153 (7)−0.0021 (6)−0.0003 (6)−0.0011 (6)
O20.0145 (7)0.0326 (8)0.0149 (7)−0.0038 (6)−0.0017 (6)−0.0012 (6)
O30.0265 (8)0.0427 (10)0.0162 (8)−0.0051 (7)−0.0015 (6)0.0021 (7)
O40.0205 (7)0.0258 (8)0.0236 (8)−0.0017 (6)0.0005 (6)−0.0059 (6)
O50.0163 (7)0.0257 (8)0.0254 (8)−0.0022 (6)−0.0007 (6)−0.0022 (6)
O60.0233 (8)0.0236 (8)0.0215 (8)0.0028 (6)−0.0067 (6)−0.0039 (6)
N10.0142 (8)0.0271 (10)0.0193 (9)−0.0012 (7)0.0022 (7)0.0005 (7)
C10.0287 (11)0.0255 (11)0.0239 (11)−0.0032 (9)0.0031 (9)0.0022 (9)
C20.0212 (10)0.0398 (13)0.0206 (11)−0.0048 (10)0.0056 (9)0.0007 (10)
C30.0120 (9)0.0218 (10)0.0271 (11)0.0007 (8)0.0027 (8)−0.0034 (9)
C40.0142 (9)0.0210 (10)0.0237 (11)0.0027 (8)−0.0011 (8)−0.0055 (8)
C50.0146 (10)0.0322 (12)0.0305 (12)−0.0005 (9)−0.0025 (9)−0.0084 (10)
C60.0202 (10)0.0413 (14)0.0300 (13)−0.0010 (10)−0.0103 (9)−0.0085 (11)
C70.0282 (12)0.0373 (13)0.0193 (11)0.0023 (10)−0.0076 (10)−0.0032 (10)
C80.0212 (11)0.0253 (11)0.0190 (11)0.0021 (8)−0.0020 (9)−0.0024 (8)
C90.0152 (10)0.0201 (10)0.0196 (11)0.0035 (7)−0.0039 (8)−0.0051 (8)
C100.0303 (12)0.0283 (11)0.0228 (12)−0.0026 (9)0.0036 (9)0.0054 (9)
C110.0410 (14)0.0494 (16)0.0166 (11)−0.0071 (12)0.0017 (10)0.0023 (11)
C120.0356 (13)0.0363 (14)0.0382 (15)0.0152 (11)−0.0147 (11)−0.0059 (11)

Geometric parameters (Å, °)

Mo1—O11.9471 (16)C6—C71.388 (3)
Mo1—O21.9431 (14)C7—C81.389 (3)
Mo1—O41.7005 (16)C8—C91.406 (3)
Mo1—O51.7022 (15)C1—H11.0000
Mo1—O62.3493 (16)C2—H2A0.9900
Mo1—N12.251 (2)C2—H2B0.9900
O1—C11.433 (3)C3—H30.9500
O2—C91.337 (3)C5—H50.9500
O3—C81.354 (3)C6—H60.9500
O3—C111.427 (3)C7—H70.9500
O6—C121.403 (3)C10—H10A0.9800
O6—H6O0.83 (3)C10—H10B0.9800
N1—C21.460 (3)C10—H10C0.9800
N1—C31.278 (3)C11—H11A0.9800
C1—C21.509 (3)C11—H11B0.9800
C1—C101.502 (3)C11—H11C0.9800
C3—C41.438 (3)C12—H12A0.9800
C4—C91.401 (3)C12—H12B0.9800
C4—C51.406 (3)C12—H12C0.9800
C5—C61.366 (3)
O1—Mo1—O2152.13 (6)C4—C9—C8119.30 (19)
O1—Mo1—O497.29 (7)O2—C9—C4123.2 (2)
O1—Mo1—O596.90 (7)O2—C9—C8117.52 (18)
O1—Mo1—O679.45 (6)O1—C1—H1109.00
O1—Mo1—N175.32 (6)C2—C1—H1109.00
O2—Mo1—O497.93 (7)C10—C1—H1109.00
O2—Mo1—O5101.30 (7)N1—C2—H2A110.00
O2—Mo1—O681.43 (6)N1—C2—H2B110.00
O2—Mo1—N180.20 (6)C1—C2—H2A110.00
O4—Mo1—O5105.61 (7)C1—C2—H2B110.00
O4—Mo1—O6169.64 (6)H2A—C2—H2B109.00
O4—Mo1—N195.01 (7)N1—C3—H3118.00
O5—Mo1—O684.60 (6)C4—C3—H3118.00
O5—Mo1—N1158.82 (7)C4—C5—H5120.00
O6—Mo1—N174.68 (6)C6—C5—H5120.00
Mo1—O1—C1118.70 (13)C5—C6—H6120.00
Mo1—O2—C9136.56 (13)C7—C6—H6120.00
C8—O3—C11117.57 (18)C6—C7—H7119.00
Mo1—O6—C12128.21 (14)C8—C7—H7119.00
C12—O6—H6O107.7 (18)C1—C10—H10A109.00
Mo1—O6—H6O116.1 (19)C1—C10—H10B109.00
Mo1—N1—C3128.57 (15)C1—C10—H10C109.00
Mo1—N1—C2111.65 (13)H10A—C10—H10B109.00
C2—N1—C3119.75 (19)H10A—C10—H10C109.00
O1—C1—C10110.63 (19)H10B—C10—H10C110.00
O1—C1—C2106.47 (18)O3—C11—H11A109.00
C2—C1—C10112.78 (19)O3—C11—H11B109.00
N1—C2—C1106.57 (17)O3—C11—H11C110.00
N1—C3—C4124.3 (2)H11A—C11—H11B109.00
C3—C4—C9122.31 (19)H11A—C11—H11C109.00
C3—C4—C5117.72 (19)H11B—C11—H11C109.00
C5—C4—C9119.9 (2)O6—C12—H12A109.00
C4—C5—C6120.3 (2)O6—C12—H12B109.00
C5—C6—C7120.1 (2)O6—C12—H12C110.00
C6—C7—C8121.1 (2)H12A—C12—H12B109.00
O3—C8—C9115.41 (19)H12A—C12—H12C109.00
C7—C8—C9119.3 (2)H12B—C12—H12C109.00
O3—C8—C7125.3 (2)
O2—Mo1—O1—C1−55.3 (2)Mo1—O2—C9—C4−21.0 (3)
O4—Mo1—O1—C167.30 (14)Mo1—O2—C9—C8160.43 (15)
O5—Mo1—O1—C1174.09 (14)C11—O3—C8—C70.7 (3)
O6—Mo1—O1—C1−102.75 (14)C11—O3—C8—C9−179.1 (2)
N1—Mo1—O1—C1−25.99 (14)Mo1—N1—C2—C128.0 (2)
O1—Mo1—O2—C953.8 (3)C3—N1—C2—C1−150.1 (2)
O4—Mo1—O2—C9−68.64 (19)Mo1—N1—C3—C49.8 (3)
O5—Mo1—O2—C9−176.39 (19)C2—N1—C3—C4−172.5 (2)
O6—Mo1—O2—C9100.92 (19)O1—C1—C2—N1−46.5 (2)
N1—Mo1—O2—C925.11 (19)C10—C1—C2—N1−168.03 (19)
O1—Mo1—O6—C12151.18 (18)N1—C3—C4—C5−179.5 (2)
O2—Mo1—O6—C12−8.45 (18)N1—C3—C4—C94.4 (3)
O5—Mo1—O6—C12−110.76 (18)C3—C4—C5—C6−177.1 (2)
N1—Mo1—O6—C1273.67 (18)C9—C4—C5—C6−0.9 (3)
O1—Mo1—N1—C2−3.26 (14)C3—C4—C9—O2−1.2 (3)
O1—Mo1—N1—C3174.7 (2)C3—C4—C9—C8177.28 (19)
O2—Mo1—N1—C2163.30 (16)C5—C4—C9—O2−177.24 (19)
O2—Mo1—N1—C3−18.79 (19)C5—C4—C9—C81.3 (3)
O4—Mo1—N1—C2−99.50 (15)C4—C5—C6—C70.1 (4)
O4—Mo1—N1—C378.4 (2)C5—C6—C7—C80.3 (4)
O5—Mo1—N1—C267.3 (3)C6—C7—C8—O3−179.7 (2)
O5—Mo1—N1—C3−114.8 (2)C6—C7—C8—C90.1 (4)
O6—Mo1—N1—C279.59 (15)O3—C8—C9—O2−2.5 (3)
O6—Mo1—N1—C3−102.5 (2)O3—C8—C9—C4178.94 (19)
Mo1—O1—C1—C249.6 (2)C7—C8—C9—O2177.7 (2)
Mo1—O1—C1—C10172.42 (14)C7—C8—C9—C4−0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6O···O1i0.83 (3)1.81 (3)2.639 (2)176 (2)
C3—H3···O4ii0.952.413.327 (2)162
C3—H3···O5ii0.952.572.958 (3)105
C10—H10A···O4iii0.982.523.221 (3)128
C10—H10B···O5i0.982.473.407 (3)161
C11—H11C···O3iv0.982.523.280 (3)134

Symmetry codes: (i) −x, −y, −z; (ii) x+1, y, z; (iii) x, −y+1/2, z−1/2; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2093).

References

  • Abbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036. [PMC free article] [PubMed]
  • Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.
  • Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev 96, 2239–2314. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  • Monadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124–m1125. [PMC free article] [PubMed]
  • Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733–738.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2000). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.
  • Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev 95, 183–238.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography